
Archetype Definition Language (ADL)
Rev 1.1

Editors:{T Beale, S Heard}
Archetype Definition Language (ADL)

Editors:{T Beale, S Heard}1

Revision: 1.1

Pages: 69

Keywords: EHR, health records, modelling, constraints, software

1. Ocean Informatics Australia
Page 1 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

© 2003 The openEHR Foundation

The openEHR foundation
is an independent, non-profit community, facilitating the creation and sharing

of health records by consumers and clinicians via open-source, standards-
based implementations.

email: info@openEHR.org web: http://www.openEHR.org

Founding
Chairman

David Ingram, Professor of Health Informatics, CHIME, University
College London

Founding
Members

Dr P Schloeffel, Dr S Heard, Dr D Kalra, D Lloyd, T Beale

Patrons To Be Announced

Archetype Definition Language (ADL)
Rev 1.1
Copyright Notice

© Copyright openEHR Foundation 2001 - 2003

All Rights Reserved

1. This document is protected by copyright and/or database right throughout the
world and is owned by the openEHR Foundation.

2. You may read and print the document for private, non-commercial use.
3. You may use this document (in whole or in part) for the purposes of making

presentations and education, so long as such purposes are non-commercial and
are designed to comment on, further the goals of, or inform third parties about,
openEHR.

4. You must not alter, modify, add to or delete anything from the document you
use (except as is permitted in paragraphs 2 and 3 above).

5. You shall, in any use of this document, include an acknowledgement in the
form:

"© Copyright openEHR Foundation 2001-2003. All rights reserved.
www.openEHR.org"

6. This document is being provided as a service to the academic community and
on a non-commercial basis. Accordingly, to the fullest extent permitted under
applicable law, the openEHR Foundation accepts no liability and offers no
warranties in relation to the materials and documentation and their content.

7. If you wish to commercialise, license, sell, distribute, use or otherwise copy the
materials and documents on this site other than as provided for in paragraphs 1
to 6 above, you must comply with the terms and conditions of the openEHR
Free Commercial Use Licence, or enter into a separate written agreement with
openEHR Foundation covering such activities. The terms and conditions of the
openEHR Free Commercial Use Licence can be found at
http://www.openehr.org/free_commercial_use.htm
Date of Issue: 24 Jan 2004 Page 2 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL)
Rev 1.1
Amendment Record

Issue Details Who Completed

1.1 CR-000079. Change interval syntax in ADL. T Beale 24 Jan 2004

1.0 CR-000077. Add cADL date/time pattern constraints.
CR-000078. Add predefined clinical types.
Better explanation of cardinality, occurrences and existence.

S Heard,
T Beale

14 Jan 2004

0.9.9 CR-000073. Allow lists of Reals and Integers in cADL.
CR-000075. Add predefined clinical types library to ADL.

T Beale,
S Heard

28 Dec 2003

0.9.8 CR-000070. Create Archetype System Description.
Moved Archetype Identification Section to new Archetype Sys-
tem document.
Copyright Assgined by Ocean Informatics P/L Australia to The
openEHR Foundation.

T Beale,
S Heard

29 Nov 2003

0.9.7 Added simple value list continuation (“,...”). Changed path syn-
tax so that trailing ‘/’ required for object paths.
Remove ranges with excluded limits.
Added terms and term lists to dADL leaf types.

T Beale 01 Nov 2003

0.9.6 Additions during HL7 WGM Memphis Sept 2003 T Beale 09 Sep 2003

0.9.5 Added comparison to other formalisms. Renamed CDL to
cADL and dDL to dADL. Changed path syntax to conform
(nearly) to Xpath. Numerous small changes.

T Beale 03 Sep 2003

0.9 Rewritten with sections on cADL and dDL. T Beale 28 July 2003

0.8.1 Added basic type constraints, re-arranged sections. T Beale 15 July 2003

0.8 Initial Writing T Beale 10 July 2003
Editors:{T Beale, S Heard} Page 3 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL)
Rev 1.1
Date of Issue: 24 Jan 2004 Page 4 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL)
Rev 1.1
Table of Contents

1 Introduction.. 9
1.1 Purpose...9
1.2 Overview..9
1.2.1 What is ADL?..9
1.2.2 Relationship to Other Information Artifacts....................................9
1.2.3 Structure...9
1.2.4 An Example ...10
1.2.5 Relationship to Object Models ..11
1.3 Relationship to Other Formalisms ...12
1.3.1 XML ..12
1.3.2 XML-schema...12
1.3.3 OWL (Web Ontology Language) ..13
1.3.4 OCL (Object Constraint Language)...14
1.3.5 KIF (Knowledge Interchange Format) ..14
1.3.6 Schematron ..15
1.4 Tools...15

2 dADL - Data ADL.. 17
2.1 Overview..17
2.2 Basics ...17
2.2.1 Keywords...17
2.2.2 Comments ..17
2.2.3 Quoting ..17
2.2.4 Information Model Identifiers ...18
2.2.5 Instance Identifiers...18
2.2.6 Semi-colons ...18
2.3 Structure...18
2.3.1 Content...18
2.3.1.1 Empty Sections ...19
2.3.2 Anonymous Objects...19
2.3.3 Identified Objects...19
2.3.3.1 Decomposed Data ...19
2.3.3.2 Shared Objects ..20
2.3.4 Scope of a dADL Document..20
2.4 Leaf Data..20
2.4.1 Atomic Types...21
2.4.1.1 Character Data ...21
2.4.1.2 String Data ..21
2.4.1.3 Integer Data ...21
2.4.1.4 Real Data ...21
2.4.1.5 Boolean Data ...21
2.4.1.6 Dates and Times ..21
2.4.2 Intervals of Ordered Primitive Types ..22
2.4.3 Lists of Primitive Types...22
2.5 Paths...22
2.5.1 Comparison with Xpath...23
2.6 dADL Object Model ..23

3 cADL - Constraint ADL .. 25
Editors:{T Beale, S Heard} Page 5 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL)
Rev 1.1
3.1 Overview ... 25
3.2 Basics... 26
3.2.1 Keywords .. 26
3.2.2 Comments.. 27
3.2.3 Information Model Identifiers... 27
3.2.4 Node Identifiers... 27
3.2.5 Natural Language .. 27
3.3 Structure .. 27
3.3.1 Information Model Entities ... 28
3.3.2 Existence, Cardinality and Occurrences.. 29
3.3.2.1 Existence ... 29
3.3.2.2 Cardinality and Built-in Container Types ...30
3.3.2.3 Occurrences ...30
3.3.3 Alternatives ... 31
3.3.4 “Any” Constraints ... 32
3.3.5 Node Identification.. 32
3.3.6 Paths .. 33
3.3.7 Internal References.. 34
3.3.8 Invariants... 35
3.3.9 Archetype References ... 37
3.4 Constraints on Primitive Types ... 37
3.4.1 Constraints on String... 38
3.4.2 Constraints on Integer ... 39
3.4.3 Constraints on Real ... 40
3.4.4 Constraints on Boolean ... 40
3.4.5 Constraints on Character ... 40
3.4.6 Constraints on Dates, Times and Durations 40
3.4.7 Constraints on Lists of Primitive types ... 42
3.5 cADL Object Model .. 42

4 ADL - Archetype Definition Language................................ 45
4.1 Basics... 45
4.1.1 Keywords .. 45
4.1.2 Node Identification.. 45
4.1.3 Local Constraint Codes ... 45
4.2 Header Sections... 46
4.2.1 Archetype Section ... 46
4.2.2 Specialise Section.. 46
4.2.3 Concept Section... 46
4.2.4 Description Section ... 46
4.3 Definition Section.. 47
4.4 Ontology Section... 48
4.4.1 Overview ... 48
4.4.2 Ontology Header Statements... 49
4.4.3 Term_definition Section.. 49
4.4.4 Constraint_definition Section.. 50
4.4.5 Term_binding Section ... 51
4.4.6 Constraint_binding Section... 51

5 Archetype Relationships.. 52
Date of Issue: 24 Jan 2004 Page 6 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL)
Rev 1.1
5.1 New Versions ...52
5.2 New Revisions ...52
5.3 Archetype Composition ...52
5.3.1 Paths in Archetype Compositions..53
5.4 Specialisation ...53
5.4.1 Object Nodes ...53
5.4.2 Relationship Nodes..53
5.4.3 Leaf Nodes...54
5.4.4 Text constraint target nodes ...54
5.4.5 Archetype Term Definitions ..54

6 Relationship with Language and Ontology 55
6.1 The Problem of Terminology...55
6.2 The Need for Shared Meaning...56

7 The ADL Parsing Process ... 57
7.1 Overview..57

8 Predefined Type Libraries .. 59
8.1 Introduction..59
8.2 Implementing Type Libraries...59
8.3 Library Provenance..59

9 Clinical ADL Predefined Type Library 61
9.1 Introduction..61
9.2 Terminological Types...61
9.2.1 TEXT ...61
9.2.2 CODED_TEXT ...61
9.2.3 CODE_PHRASE ...61
9.2.3.1 Value Expressions ...62
9.2.3.2 Constraint Expressions ..62
9.2.4 Queries...63
9.3 Quantitative Types ...63
9.3.1 QUANTITY...63
9.3.2 COUNTABLE ...64
9.3.3 ORDINAL ...64
9.3.4 INTERVAL ..65
9.4 Date/Time Types ..65
9.5 Additions to the dADL Model ...65
9.6 Additions to the cADL Model ...66

J References... 67
Editors:{T Beale, S Heard} Page 7 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL)
Rev 1.1
Date of Issue: 24 Jan 2004 Page 8 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL) Introduction
Rev 1.1
1 Introduction

1.1 Purpose
This document describes the syntax and design basis of the Archetype Definition Language (ADL). It
is intended for software developers, and technically-oriented domain specialists and subject matter
experts (SMEs). Although ADL is primarily intended to be read and written by tools, it is quite read-
able by humans and ADL archetypes can be hand-edited using a normal text editor.

1.2 Overview

1.2.1 What is ADL?
Archetype Definition Language (ADL) is a formal language for expressing archetypes, which are
constraint-based models of domain entities, or what some might call “structured business rules”. The
archetype concept is described in [1], [2], [3], and [4]. ADL uses two other syntaxes, cADL (con-
straint form of ADL) and dADL (data definition form of ADL) to describe constraints on data which
are instances of some information model (e.g. expressed in UML). It is most useful when very generic
information models are used for describing the data in a system, for example, where the logical con-
cepts PATIENT, DOCTOR and HOSPITAL might all be represented using a small number of classes such
as PARTY and ADDRESS. In such cases, archetypes are used to constrain the valid structures of
instances of these generic classes to represent the desired domain concepts. In this way future-proof
information systems can be built - relatively simple information models and database schemas can be
defined, and archetypes supply the semantic modelling, completely outside the software. ADL can
thus be used to write archetypes for any domain where formal object model(s) exist which describe
data instances.

When archetypes are used at runtime in particular contexts, they are composed into larger constraint
structures, with local or specialist constraints added, by the use of templates. The formalism of tem-
plates is the template form of ADL (tADL) (to be described). Archetypes can also be specialised.

1.2.2 Relationship to Other Information Artifacts
Archetypes are distinct, structured models of domain concepts, such as “blood pressure”, and sit
between lower layers of knowledge resources in a computing environment, such as clinical terminol-
ogies and ontologies, and actual data in production systems. Their primary purpose is to provide a
way of managing generic data so that it conforms to particular domain structures and semantic con-
straints. Consequently, they bind terminology and ontology concepts with information model seman-
tics, to make statements about what valid dat structures look like. ADL provides a solid formalism for
expressing, building and using these entities computationally.

1.2.3 Structure
Archetypes expressed in ADL resemble programming language files, and have a defined syntax.
ADL itself is a very simple “glue” syntax, which uses two other well-defined syntaxes for expressing
structured constraints and data, respectively. The cADL syntax is used to express the archetype defi-
nition, while the dADL syntax is used to express data, which appears in the description and
ontology sections of an ADL archetype. The top-level structure of an ADL archetype is shown in
FIGURE 1.

This main part of this document describes dADL, cADL before going on to describe ADL, archetypes
and domain-specific type libraries and syntax.
Editors:{T Beale, S Heard} Page 9 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Introduction Archetype Definition Language (ADL)
Rev 1.1
1.2.4 An Example
The following is an example of a very simple archetype, giving a feel for the syntax. The main point
to glean from the following is that the notion of ‘guitar’ is defined in terms of constraints on a generic
model of the concept INSTRUMENT. The names mentioned down the left-hand side of the definition
section (“INSTRUMENT”, “size” etc) are alternately class and attribute names from an object model.
Each block of braces encloses a specification for some particular set of instances that conform to a
specific concept, such as ‘guitar’ or ‘neck’, defined in terms of constraints on types from a generic
class model. The leaf pairs of braces enclose constraints on primitive types such as Integer, String,
Boolean and so on.

archetype
adl-test-instrument.guitar.draft

concept
[at0000] -- guitar

definition
INSTRUMENT[at0000] matches {

size matches {60..120} -- assumed in cm
date_of_manufacture matches {yyyy-mm-??} -- year & month ok
parts cardinality matches {0..*} matches {

PART[at0001] matches { -- neck
material matches {[local::at0003]} -- timber

}
PART[at0002] matches { -- body

material matches {[local::at0003,
 at0004]} -- timber or steel

}
}

archetype

[specialise

concept

description

definition

ontology

archetype_id

archetype_id]

concept_id

descriptive
meta-data

formal
constraint
definition

terminology
and language
definitions

FIGURE 1 ADL Archetype Structure

ADL

cADL
dADL

optional section

Archetype
Date of Issue: 24 Jan 2004 Page 10 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL) Introduction
Rev 1.1
}

ontology
primary_language = <"en">
languages_available = <"en", ...>

term_definitions("en") = <
items("at0000") = <

text = <"guitar">;
description = <"stringed instrument">

>
items("at0001") = <

text = <"neck">;
description = <"neck of guitar">

>
items("at0002") = <

text = <"timber">;
description = <"straight, seasoned timber">

>
items("at0003") = <

text = <"steel">;
description = <"stainless steel">

>
items("at0004") = <

text = <"body">;
description = <"body of guitar">

>
>

1.2.5 Relationship to Object Models
As a parsable syntax, ADL has a formal relationship with structural models such as those expressed in
UML, according to the scheme of FIGURE 2. Here we can see that ADL documents are parsed into a
network of objects (often known as a ‘parse tree’) which are themselves defined by a formal, abstract
object model. Such a model can in turn be re-expressed as any number of concrete models, such as in
a programming language, XML-schema or OMG IDL.

However, there can also be more than one abstract object model whose objects could be generated by
an ADL parser, based on exactly the same input. One reason for this would be to define an informa-
tion model (IM) independent ADL class model, and various IM-dependent ones. In the former, all
ADL object nodes would be represented using instances of the same class, say ADL_NODE, whereas in
the latter, they would be instances of different classes - an ADL SECTION node might be parsed to an
instance of a class C_SECTION, which expresses constraints on instances of the class SECTION, found
in for example, the CEN 13606 EHR model, the HL7 CDA model, and the openEHR EHR reference
model. The IM-independent class model can be considered a direct transform of the ADL EBNF
specification, and is described in this document in the sections dADL Object Model on page 23 and
cADL Object Model on page 42.

Regardless of the possible object models, the ADL syntax remains constant as the primary formalism
for authoring and sharing archetypes. A further serialised form of ADL is possible, by translating the
ADL EBNF into its own XML language, i.e. writing an XML DTD directly for ADL, as indicated on
the diagram by “XADL”. If this is in fact possible, XADL archetypes would be completely equivalent
to ADL archetypes, and could also be used as the medium of authoring and/or sharing. This document
describes only standard ADL, but it can be assumed that all the semantics described would exist in a
notional XADL, the only difference being in the types of tools which would be used with each form.
Editors:{T Beale, S Heard} Page 11 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Introduction Archetype Definition Language (ADL)
Rev 1.1
1.3 Relationship to Other Formalisms
Whenever a new formalism is defined, it is reasonable to ask the question: are there not existing for-
malisms which would do the same job? The following sections compare ADL to other formalisms
and show why it is different.

1.3.1 XML
Although, as pointed out above, it is possible to define an XADL language, the first priority was to
develop an abstract syntax without the interference of other syntaxes for concrete data representation.
ADL has been developed without using XML in the first instance because it simplifies the syntax def-
inition, and ensures that none of the shortcomings of XML obstruct the needs of archetype expression
as they occasionally have in the past (in the case of XADL for example, the limitations of DTD of
XML-schema could come into play). In essence, ADL allows the language developer to deal with
only one formalism (ADL), not two (ADL and XML). This is the same strategy as embodied in the
abstract OWL syntax compared to its concrete RDF-based syntax (see below). ADL is also human
readable, whereas XML is only useful for machine to machine communication (although some tor-
tured souls continue to believe that XML, because it can be read into a text editor, is somehow
intended directly for humans...). Further it provides a formal terminology-based node identification
mechanism, and based on that, a path language.

1.3.2 XML-schema
Previously, archetypes have been expressed as XML instance, conforming to W3C XML schemas,
for example in the Good Electronic Health Record (GeHR; see http://www.gehr.org) and
openEHR projects. The schemas used in those projects correspond technically to the XML expres-

FIGURE 2 Relationship of ADL with Object Models

ADL
doc

parser

arch: top_part main
main: id_decl descr_decl def_decl
id_decl: SYM_ARCHETYPE arch_id
arch_id: ...

ADL Language
Definition (EBNF)

IM-independent
ADL object model

IM-indept

parser
IM-dept

language/syntax
conformance

instance/type
conformance

generic
ADL objects

IM-based
Archetype

objects

XML-schema
IDL
other concrete
formalisms

XADL

direct
translation

Information
Model

Specification
(e.g. XMI)

instance/type
conformance
Date of Issue: 24 Jan 2004 Page 12 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

http://www.gehr.org

Archetype Definition Language (ADL) Introduction
Rev 1.1
sions of IM-dependent object models shown in FIGURE 2. XML archetypes are accordingly equiva-
lent to serialised instances of the parse tree, i.e. particular ADL archetypes serialised from objects into
XML instance.

With ADL parsing tools it is possible to convert ADL to any number of forms, including various
XML formats, offering greater flexibility than previously. In this role, all XML models of archetype
semantics are treated as derivations of ADL syntax; correspondingly, archetypes expressed in XML
are treated as being derived from ADL.

1.3.3 OWL (Web Ontology Language)
The Web Ontology Language (OWL) [14] is a W3C initiative for defining ontologies in a form which
can be used on the web, and is formally an extension of RDF (Resource Description Framework).
OWL is a general purpose ontology language, and is primarily used to describe “classes” of things in
such a way as to support inferencing on data. There is in general no assumption that the data itself was
built based on any particular class model - it might be audio-visual objects in an archive, technical
documentation for an aircraft or the web pages of a company. OWL’s “class” definitions can usually
be considered as constraint statements on an implied model on which data appears to be based.
Restrictions are a primary way of defining classes. For example, the following fragment uses a prop-
erty restriction to say that the class Opera (a subclass of owl:Class) has at least one librettist.

<owl:Class rdf:about="#Opera">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasLibrettist" />
 <owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

Possible ADL equivalents include:

DOCUMENT ∈ {
class ∈ {[ac0001]} -- resolves to “Score”
type ∈ {[ac0002]} -- resolves to “Opera”
attributes cardinality ∈ {0..*} ∈ {

DOC_ATTR occurrences ∈ {1..*} ∈ {
name ∈ {ac0003} -- resolves to “librettist”
value ∈ {*}

}
}

}

and:

OPERA ∈ {
librettist cardinality ∈ {1..*} ∈ {*}

}

The first version is targetted to data defined by a generic class model containing the class DOCUMENT
with attributes class and type, and the class DOC_ATTR with attributes name and value, while the sec-
ond is targetted to a model which contains the class OPERA with attribute librettist.

While appearing to be semantically equivalent, there are subtle differences in the OWL and ADL
approaches in these examples. The OWL fragment is essentially defining the class Opera as “all those
resources for which the property hasLibrettist exists, and has one or more values” - in other words
a constraint which has to be interpreted by a query engine interrogating a repository of electronic doc-
uments. How the query engine works might be complex, depending on how few assumptions are able
Editors:{T Beale, S Heard} Page 13 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Introduction Archetype Definition Language (ADL)
Rev 1.1
to be made about the content’s form. The ADL fragments both state constraints on data built accord-
ing to known data models, and from the point of view of querying, it is a simple exercise to find
matches. Seen as query objects, ADL archetypes and OWL ontologies might be able to be proven
equivalent. However, one of the primary purposes of archetypes is to be used in creating data in the
first place, and this is where the in-built assumptions of what object model an archetype is targetted to
are crucial. It is not yet clear how a general purpose OWL class could be used for this purpose,
although it may be possible.

Despite the differences, there appears to be a lot in common between OWL and ADL, and an initial
review of semantics reveals similar coverage. It may be that the only significant differences are a) that
ADL is in its pure form a non-XML syntax, and therefore unencumbered by any of the limitations of
the XML syntaxes, b) that ADL archetypes are always written with respect to some object model, and
c) that node identification and path processing is built in to ADL. Indeed one of the main justifica-
tions of ADL is to clearly and precisely described the desired semantics of constraint on object mod-
els, without reference to other syntaxes, in order to further the research on archetypes and templates;
this is not intended to discount the future use of other epxressions or tools, and it may be that in the
future tools can be written to enable ADL to be fully convertible to OWL and vice-versa, enabling the
same archetypes to be used in XML and non-XML environments (such as pure OO systems).

1.3.4 OCL (Object Constraint Language)
The OMG’s Object Constraint Language (OCL) appears to be an obvious contender for writing con-
straint definitions for object models. However, its real use is to write constraints within object models,
including function pre- and post-conditions, and class invariants. Accordingly, there is no structural
character to the syntax - all statements are essentially first-order predicate logic statements about ele-
ments in models expressed in UML. This makes it impossible to use OCL to describe an archetype in
a structural way which is natural to domain experts. OCL also has some flaws [5].

However, OCL is in fact relevant to ADL. ADL archetypes include invariants (and one day, might
include pre- and post-conditions). Currently these are expressed in a syntax very similar to OCL, with
certain differences. The exact definition of the ADL invariant syntax in the future will depend some-
what on the progress of OCL through the OMG standards process.

As with OWL, it may be possible in the future to prove that any ADL archetype can be losslessly
transformed to OCL statements. It should be noted that the predicate logic flavour of OCL is closer
semantically and syntactically to the way many software developers think about constraints than any
of the XML syntaxes.

1.3.5 KIF (Knowledge Interchange Format)
The Knowledge Interchange Format (KIF) is a knowledge representation language whose goal is to
be able to describe formal semantics which would be sharable among software entities, such as infor-
mation systems in an airline and a travel agency. An example of KIF (taken from [8]) used to describe
the simple concept of “units” in a QUANTITY class is as follows:

(defrelation BASIC-UNIT
(=> (BASIC-UNIT ?u) ; basic units are distinguished

(unit-of-measure ?u))) ; units of measure

(deffunction UNIT*
; Unit* maps all pairs of units to units
(=> (and (unit-of-measure ?u1)

(unit-of-measure ?u2))
(and (defined (UNIT* ?u1 ?u2))
Date of Issue: 24 Jan 2004 Page 14 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL) Introduction
Rev 1.1
(unit-of-measure (UNIT* ?u1 ?u2))))
; It is commutative
(= (UNIT* ?u1 ?u2) (UNIT* ?u2 ?u1))
; It is associative
(= (UNIT* ?u1 (UNIT* ?u2 ?u3))

(UNIT* (UNIT* ?u1 ?u2) ?u3)))

(deffunction UNIT^
; Unit^ maps all units and reals to units
(=> (and (unit-of-measure ?u)

(real-number ?r))
(and (defined (UNIT^ ?u ?r))

(unit-of-measure (UNIT^ ?u ?r))))
; It has the algebraic properties of exponentiation
(= (UNIT^ ?u 1) ?u)
(= (unit* (UNIT^ ?u ?r1) (UNIT^ ?u ?r2))

(UNIT^ ?u (+ ?r1 ?r2)))
(= (UNIT^ (unit* ?u1 ?u2) ?r)

(unit* (UNIT^ ?u1 ?r) (UNIT^ ?u2 ?r)))

It should be clear from the above that KIF is a definitional language - it defines all the concepts it
mentions. This is not the situation for which ADL was designed. The most common situation in
which we find ourselves is that information models already exist, and may even have been deployed
as software. The goal of ADL is to express constraints on instances of those models; thus an ADL
archetype constraining QUANTITY objects will always be able to assume that a semantic definition of
UNIT also exists outside of ADL. Thus, ADL itself would not be used to define the semantics of
QUANTITY.units, rather it will constrain the definition of the same in some existing object model.

1.3.6 Schematron
To Be Continued:

1.4 Tools
A validating ADL parser is freely available from http://www.openEHR.org. The EBNF production
rules for the parser and lexical specification are also available on the website.
Editors:{T Beale, S Heard} Page 15 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

http://www.openEHR.org/archetypes

Introduction Archetype Definition Language (ADL)
Rev 1.1
Date of Issue: 24 Jan 2004 Page 16 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL) dADL - Data ADL
Rev 1.1
2 dADL - Data ADL

2.1 Overview
The dADL syntax provides a formal means of expressing instance data based on an underlying infor-
mation model, which is both readable by humans and by machines. The general appearance is exem-
plified by the following:

PERSON[01234] = <
name = < -- person’s name

forenames = <"Sherlock">
family_name = <"Holmes">
salutation = <"Mr">

>
address = < -- person’s address

habitation_number = <"22a">
street_name = <“Baker St”>
city = <“London”>
country = <“England”>

>
>

In the above the identifiers PERSON, name, address etc are all assumed to come from an information
model. The basic design principle of dADL is to be able to represent data in a way that is both
machine-processible and human readable, while making the fewest assumptions possible about the
information model to which the data conforms. To this end, type names are only used (optionally) for
root nodes; otherwise, only attribute names and values are explicitly shown; no syntactical assump-
tions are made about whether the underlying model is relational, object-oriented or what it actually
looks like. More than one information model can be compatible withe the same dADL-expressed
data. Literal leaf values are only of ‘standard’ widely recognised types, i.e. Integer, Real, Boolean,
String, Character and a range of Date/time types. In standard dADL, documented in this section, all
other more sophisticated types are expressed structurally, with leaf values of these primitive types.
Other domain-specific literal types are documented in Predefined Type Libraries on page 59.

2.2 Basics

2.2.1 Keywords
dADL has no keywords of its own - all identifiers are assumed to come from an information model.

2.2.2 Comments
In dADL, comments are indicated by the “--” characters. Multi-line comments are achieved using the
“--” leader on each line where the comment continues. In this document, comments are shown in
brown.

2.2.3 Quoting
The backslash character (‘\’) is used to quote reserved characters in dADL, which include ‘<‘, ‘>’,
and ‘”’. The only characters which need to be quoted inside a string are the double quote character
(‘”’) and the backslash character itself.
Editors:{T Beale, S Heard} Page 17 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

dADL - Data ADL Archetype Definition Language (ADL)
Rev 1.1
2.2.4 Information Model Identifiers
Two types of identifiers from information models are used in dADL: type names and attribute names.
Type names are shown in this document in all uppercase, e.g. PERSON, while attribute names are
shown in all lowercase, e.g. home_address. In both cases, underscores are used to represent word
breaks. This convention is used to maximise the readability of this document, and other conventions
may be used, such as the common programmer’s mixed-case convention exemplified by Person and
homeAddress. The convention chosen for any particular dADL document should be based on the con-
vention used in the underlying information model. Identifiers are shown in green in this document.

2.2.5 Instance Identifiers
Data instances are identified in dADL using an identifier delimited by brackets, e.g. [some_id]. Any
string may appear within the brackets, depending on how it is used. Instance identifiers may be used
to identify and refer to data expressed in dADL, but also to external entities. Instance identifiers are
shown in magenta.

To Be Continued: some rules for this will be required

2.2.6 Semi-colons
Semi-colons can be used to separate dADL blocks, for example when it is preferable to include multi-
ple attribute/value pairs on one line. Semi-colons make no semantic difference at all, and are included
only as a matter of taste. The following examples are equivalent:

items(2) = <text = <"plan">; description = <"The clinician's advice">>

items(2) = <text = <"plan"> description = <"The clinician's advice">>

items(2) = <
text = <"plan">
description = <"The clinician's advice">

>

2.3 Structure

2.3.1 Content
The structure of dADL is purely hierarchical, and consists of the general pattern:

attribute_id = <value>

The attribute_id may be an attribute name, such as address, or an attribute name followed by a
qualifier, such as addresses(“home”), addresses(“work”). Qualifiers can be of any basic compa-
rable type, and must follow the same syntactical rules described below for data of primitive types
appearing in the value structure. Qualified attributes allow for lists and hash table data structures to be
easily expressed, without making any assumptions about how they are actually represented in any
language.

The <value> part of the pattern above may be any depth of nested repetitions of the same pattern,
giving a typical structure like the following:

attribute = <
attribute = <

attribute(1) = <leaf_value>
attribute(2) = <leaf_value>

>
attribute = <
Date of Issue: 24 Jan 2004 Page 18 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL) dADL - Data ADL
Rev 1.1
attribute = <
attribute = <leaf_value>

>
attribute = <leaf_value>

>
>

2.3.1.1 Empty Sections
Empty sections are allowed at both internal and leaf node levels, enabling the author to express the
fact that there is in some particular instance, no data for an attribute, while still showing that the
attribute itself is expected to exist in the underlying information model. An empty section looks as
follows:

address = <> -- person’s address

Nested empty sections can be used.

2.3.2 Anonymous Objects
Data expressed in dADL within some other document or syntax (such as an ADL archetype) in the
form shown above are anonymous, meaning that they have no overall identifier. This might be done
because there is no need to identify the data (there is only one instance of it), or it is preferred to
shown no type information, which would imply more about the underlying information model. Multi-
ple “trees” of anonymous dADL data can be used in the one document, usually implying separate data
objects, such as in the following example:

people = <
...

>
places = <

...
>

However, it is sometimes preferable to include more typing information rather then less, and to be
able to refer to blocks of data. To do this, identified dADL is needed.

2.3.3 Identified Objects
Anonymous dADL is usually used to express the data of an instance of some formal type, such as
PERSON, in the first example above. The syntax of an explicitly identified dADL fragment follows the
general pattern:

TYPE[id] = <
attribute = <

...
>
attribute = <

...
>

>

Providing the type and a unique instance identifier for a fragment of dADL makes the fragment
addressable from elsewhere, including from other fragments of dADL. As a consequence, a number
of useful ways of expressing data become possible.

2.3.3.1 Decomposed Data
An instance of a business type which is really composed of instances of smaller types can be repre-
sented in two ways in dADL. The first is as one large block, as follows:

ORGANIZATION[acme_fireworks] = <
Editors:{T Beale, S Heard} Page 19 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

dADL - Data ADL Archetype Definition Language (ADL)
Rev 1.1
name(“ACME Fireworks and Explosives”) = <
divisions(“sales”) = <

head = <“Huan Xiu”>
location = <

...
>

>
divisions(“special events”) = <

head = <“W E Coyote”>
location = <

...
>

>
>

The second is as a decomposition into the constituent identified dADL blocks:

ORGANIZATION[acme_fireworks] = <
name(“ACME Fireworks and Explosives”) = <
divisions(“sales”) = <UNIT[acme_fireworks:sales]>
divisions(“special events”) = <UNIT[acme_fireworks:sales]

>
UNIT[acme_fireworks:sales] = <

id = <“sales”>
head = <“Huan Xiu”>
location = <

...
>

>
UNIT[acme_fireworks:special_events] = <

id = <“special events”>
head = <“W E Coyote”>
location = <

...
>

>

2.3.3.2 Shared Objects
The decomposed form of dADL can be used to express sharing of an object by other objects, by the
use of the same identifier in more than one place.

2.3.4 Scope of a dADL Document
Multiple trees of dADL data occurring one after the other, whether identified or anonymous, are con-
sidered to comprise one dADL document. Accordingly, node identifiers are assumed to be globally
unique at least within the document, if not at some higher level.

2.4 Leaf Data
All dADL data eventually devolve to instances of the primitive types String, Integer, Real, Dou-
ble, String, Character, various date/time types, lists of these types, and a few special types. dADL
does not use type or attribute names for instances of primitive types, only manifest values, making it
possible to assume as little as possible about type names and structures of the primitive types. In all
the following examples, the manifest data values are assumed to appear immediately inside a leaf pair
of angle brackets, i.e.

some_attribute = <manifest value here>
Date of Issue: 24 Jan 2004 Page 20 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL) dADL - Data ADL
Rev 1.1
2.4.1 Atomic Types

2.4.1.1 Character Data
Characters are shown in a number of ways. In the literal form, a character is shown in single quotes,
as follows:

‘a’

Special characters are expressed using the ISO 10646 or XML special character codes as described
above. Examples:

‘&ohgr;’ -- greek omega

2.4.1.2 String Data
All strings are shown in inverted commas, as follows:

“this is a string”

Quoting and line extension is done using the backslash character, as follows:

“this is a much longer string, what one might call a \“phrase\” or even \
a \“sentence\” with a very annoying backslash (\\) in it.”

String data can be used to contain almost any other kind of data, which is intended to be parsed as
some other formalism. Special characters (including the inverted comma and backslash characters)
are expressed using the ISO 10646 or XML special character codes within single quotes. ISO codes
are mnemonic, and follow the pattern &aaaa;, while XML codes are hexadecimal and follow the pat-
tern &#xHHHH;, where H stands for a hexadecimal digit. An example is:

“a ∈ A” -- prints as: a ∈ Α
2.4.1.3 Integer Data
Integers are represented simply as numbers, e.g.:

25
300,000
29e6

Commas for breaking long numbers are optional.

2.4.1.4 Real Data
Real numbers are assumed whenever a decimal is detected in a number, e.g.:

25.0
3.1415926
6.023e23

2.4.1.5 Boolean Data
Boolean values can be indicated by the following values (case-insensitive):

True
False

2.4.1.6 Dates and Times
In dADL, all dates and times are expressed in ISO8601 form, which enables dates, times, date/times
and durations to be expressed. Patterns for dates and times based on ISO 8601 include the following:

yyyy-MM-dd -- a date
hh:mm[:ss[.sss][Z]] -- a time
yyyy-MM-dd hh:mm:ss[.sss][Z] -- a date/time

where:

yyyy = four-digit year
MM = month in year
Editors:{T Beale, S Heard} Page 21 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

dADL - Data ADL Archetype Definition Language (ADL)
Rev 1.1
dd = day in month
hh = hour in 24 hour clock
mm = minutes
ss.sss = seconds, incuding fractional part
Z = the timezone in the form of a ‘+’ or ‘-’ followed by 4 digits

indicating the hour offset, e.g. +0930, or else the literal ‘Z’
indicating +0000 (the Greenwich meridian).

Durations are expressed using a string which starts with "P", and is followed by a list of periods, each
appended by a single letter designator: "D" for days, "H" for hours, "M" for minutes, and "S" for sec-
onds. Examples of date/time data include:

1919-01-23 -- birthdate of Django Reinhardt
16:35.04 -- rise of Venus in Sydney on 24 Jul 2003
2001-05-12 07:35:20+1000 -- timestamp on an email received from Australia
P22D4H15M0S -- period of 22 days, 4 hours, 15 minutes

2.4.2 Intervals of Ordered Primitive Types
Intervals of any ordered primitive type, i.e., Integer, Real, Date, Time, Date_time and Duration, can
be stated using the following uniform syntax, where N, M are instances of any of the ordered types:

|N..M| in the inclusive range where N and M are integers, or the infinity indicator;

|<N| less than N;
|>N| greater than N;
|>=N| greater than or equal to N;
|<=N| less than or equal to N;
|N +/-M| interval of N ± M.

Examples of this syntax include:

|0..5| -- integer interval
|0.0..1000.0 | -- real interval
|08:02..09:10| -- interval of time
|>= 1939-02-01| -- open-ended interval of dates
|5.0 +/-0.5| -- 4.5 - 5.5

2.4.3 Lists of Primitive Types
Data of any primitive type can occur singly or in lists, which are shown as comma-separated lists of
item, all of the same type, such as in the following examples:

“cyan”, “magenta”, “yellow”, “black” -- printer’s colours
1, 1, 2, 3, 5 -- first 5 fibonacci numbers
08:02, 08:35, 09:10 -- set of train times

No assumption is made in the syntax about whether a list represents a set, a list or some other kind of
sequence - such semantics must be taken from an underlying information model.

Lists which happen to have only one datum are indicated by using a comma followed by a list contin-
uation marker of three dots, i.e. “...”, e.g.:

“en”, ... -- languages
“icd10”, ... -- terminologies
[at0200], ...

2.5 Paths
Paths can be constructed to refer to any node in dADL data. The general form of the syntax is as fol-
lows:
Date of Issue: 24 Jan 2004 Page 22 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL) dADL - Data ADL
Rev 1.1
[‘/’|object_id] attr_name [‘[’ object_id ‘]’] {‘/’ attr_name [‘[’ object_id
‘]’ ‘/’]}

Essentially paths consist of segments separated by slashes (‘/’), where each segment is an attribute
name with optional object indentifier. A path either finishes in a slash, and identifies an object node,
or finishes in a relationship name, and identifies a relationship node. The optional leading item may
be slash or an object id, in the case of identified dADL; either indicates an absolute path; the path is
relative if the first segment is an attribute name.

The following data tree and example paths illustrate the syntax:

term_definitions("en") = <
items("at0000") = <

text = <"apgar result">
description = <"apgar result of newborn">

>
items("at0001") = <

text = <"history">
description = <"history">

>
...

>

/ -- root object node
/term_definitions -- ‘term_definitions’ relation node
/term_definitions[en]/ -- object after first ‘=’
/term_definitions[en]/items -- ‘items’ relationship node inside block
/term_definitions[en]/items[at0001]/ -- at0001 text/description block
/term_definitions[en]/items[at0001]/text/ -- at0001 text value

2.5.1 Comparison with Xpath
The syntax above is structurally very similar to that used in the Xpath query language. A few differ-
ences are worth pointing out. Xpath differentiates between “children” and “attributes” sub-items of an
object due to the difference in XML between Elements (true sub-objects) and Attributes (tag-embed-
ded primitive values). In ADL, as with any pure object formalism, there is no such distinction, and all
subparts of any object are referenced in the manner of Xpath children; in particular, in the Xpath
abbreviated syntax, the qualifier child:: does not need to be used.

Secondly, in the Xpath abbreviated syntax, the expression:

items[1]

means “the first object in the ‘items’ children of the current object”. In ADL, the “[1]” is read not as
an ordinal number, but as an identifier, or key - it is equivalent to the Xpath expression:

items[@id=1]

ADL does not distinguish attributes from children, and also assumes the id attribute. Thus, the fol-
lowing expressions are legal in ADL, but might not be in Xpath:

items[1] -- the member of ‘items’ with key ‘1’
items[foo] -- the member of ‘items’ with key ‘foo’
items[at0001] -- the member of ‘items’ with key ‘at0001’

Since one would expect that simple numeric ids (‘1’, ‘2’, ‘3’, etc) would correspond with ordinal
positions in a list, the first path will refer to the same object in Xpath and ADL.

2.6 dADL Object Model
FIGURE 3 illustrates the essentials of the dADL object model.
Editors:{T Beale, S Heard} Page 23 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

dADL - Data ADL Archetype Definition Language (ADL)
Rev 1.1
FIGURE 3 dADL Object Model

DADL_ITEM

DADL_NODE

DADL_OBJECT_NODE

DADL_OBJECT_ITEM
node_id[1]: String

DADL_REL_NODE
attr_name[1]: String
is_multiple[1]: Boolean

DADL_OBJECT_
SIMPLE_LIST
item[1]:
List<Any>

DADL_OBJECT_LEAF

DADL_OBJECT_
SIMPLE
item[1]: Any

children
*

parent
1

children
*

DADL_OBJECT_
SIMPLE
item[1]: Any

DADL_OBJECT_
SIMPLE_INTERVAL
item[1]:
Interval<Ordered>
Date of Issue: 24 Jan 2004 Page 24 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL) cADL - Constraint ADL
Rev 1.1
3 cADL - Constraint ADL

3.1 Overview
cADL is a syntax which enables constraints on data defined by object-oriented information models to
be expressed in archetypes or other knowledge definition formalisms. It is most useful for defining
the specific allowable constructions of data whose instances conform to very general object models.
cADL is used both at “design time”, by authors and/or tools, and at runtime, by computational sys-
tems which validate data by comparing it to the appropriate sections of cADL in an archetype. The
general appearance of cADL is illustrated by the following example:

PERSON[at0000] matches { -- constraint on PERSON instance
name matches { -- constraint on PERSON.name

TEXT matches {/.+/} -- any non-empty string
}
addresses cardinality matches {0..*} matches { -- constraint on

ADDRESS matches { -- PERSON.addresses
...

}
}
invariant:

basic_validity: exists addresses implies exists name
}

Some of the textual keywords in this example can be more efficiently rendered using common mathe-
matical logic symbols. In the following example, the matches, exists and implies keywords have
been replaced by appropriate symbols:

PERSON[at0000] ∈ { -- constraint on PERSON instance
name ∈ { -- constraint on PERSON.name

TEXT ∈ {/..*/} -- any non-empty string
}
addresses cardinality ∈ {0..*} ∈ { -- constraint on

ADDRESS ∈ { -- PERSON.addresses
...

}
}
invariant:

basic_validity: ∃ addresses ⊃ ∃ name
}

The full set of equivalences appears below. Raw cADL is stored in the text-based form, to remove
any difficulties with representation of symbols, to avoid difficulties of authoring cADL text in basic
text editors which do not supply symbols, and to aid reading in English. However, the symbolic form
might be more widely used due to the use of tools, and formatting in HTML and other documentary
formats, and may be more comfortable for non-English speakers and those with formal mathematical
backgrounds. This document uses both conventions. The use of symbols or text is completely a mat-
ter of taste, and no meaning whatsoever is lost by completely ignoring one or other format according
to one’s personal preference.

In the standard cADL documented in this section, literal leaf values (such as the regular expression
/..*/ in the above example) are always constraints on a set of ‘standard’ widely-accepted primitive
types, as described in the dADL section. Other more sophisticated constraint syntax types are
described in cADL - Constraint ADL on page 25.
Editors:{T Beale, S Heard} Page 25 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

cADL - Constraint ADL Archetype Definition Language (ADL)
Rev 1.1
3.2 Basics

3.2.1 Keywords
The following keywords are recognised in cADL:

• matches, ~matches, is_in, ~is_in

• occurrences, existence, cardinality

• unordered, unique

• use_node, use_archetype

In cADL invariants, the following further keywords can be used:

• exists, for_all,

• and, or, xor, not, implies, true, false

Symbol equivalents for some of the above are given in the following table.

The not operator can be applied as a prefix operator to all other operators except for_all; either tex-
tual rendering “not” or “~” can be used.

Keywords are shown in blue in this document.

The matches or is_in operator deserves special mention, since it is a key operator in cADL. This
operator can be understood mathematically as set membership. When it occurs between a name and a
block delimited by braces, the meaning is: the set of values allowed for the entity referred to by the
name (either an object, or parts of an object - attributes) is specified between the braces. What appears
between any matching pair of braces can be thought of as a specification for a set of values. Since
blocks can be nested, this approach to specifying values can be understood in terms of nested sets, or
in terms of a value space for objects of a set of defined types. Thus, in both of the following examples,
the matches operator links the name of an entity to a value space.

XXX matches {/*ion/} -- the set of english words ending in ‘ing’

XXX matches {
aaa matches { |

YYY matches {0..3} |
} | the value space of the
bbb matches { | and instance of XXX

ZZZ matches {>1992-12-01} |
} |

}

Textual
Rendering

Symbolic
Rendering

Meaning

matches,
is_in

∈ Set membership, “p is in P”

exists ∃ Existence quantifier, “there exists ...”
for_all ∀ Universal quantifier, “for all x...”
implies ⊃ Material implication, “p implies q”, or “if p then q”

and ∧ Logical conjunction, “p and q”
or ∨ Logical disjunction, “p or q”

xor ∨ Exclusive or, “only one of p or q”
not, ~ ∼ Negation, “not p”
Date of Issue: 24 Jan 2004 Page 26 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL) cADL - Constraint ADL
Rev 1.1
Very occasionally, the matches operator needs to be used in the negative, usually at a leaf block. Any
of the following will can be used to constraint the value space of XXX to any number except 5:

XXX ~matches {5}
XXX ~is_in {5}
XXX ∉{5}

The choice of whether to use matches or is_in is a matter of taste and background; those with a math-
ematical background will probably prefer is_in, while those with a data processing background may
prefer matches.

3.2.2 Comments
In cADL, comments are indicated by the “--” characters. Multi-line comments are achieved using the
“--” leader on each line where the comment continues. In this document, comments are shown in
brown.

3.2.3 Information Model Identifiers
As with dADL, identifiers from the underlying information model are used. In cADL, type names and
any property (i.e. attribute or function) name can be used, whereas in dADL, only type names and
attribute names appear. Type identifiers are shown in this document in all uppercase, e.g. PERSON,
while attribute identifiers are shown in all lowercase, e.g. home_address. In both cases, underscores
are used to represent word breaks. This convention is solely for improving the readability of this doc-
ument, and other conventions may be used, such as the common programmer’s mixed-case conven-
tion exemplified by Person and homeAddress. The convention chosen for any particular cADL
document should be chosen based on the convention used in the underlying information model. Iden-
tifiers are shown in green in this document.

3.2.4 Node Identifiers
In cADL, an entity in brackets e.g. [xxxx] is used to identify “object nodes”, i.e. nodes expressing
constraints on instances of some type. Object nodes always commence with a type name. Any string
may appear within the brackets, depending on how it is used. Node identifiers are shown in magenta
in this document.

3.2.5 Natural Language
cADL is completely independent of all natural languages. The only potential exception is where con-
straints include literal values from some language, and this is easily, and routinely avoided by the use
of separate language and terminology definitions, as used in ADL archetypes. However, for the pur-
poses of readability, comments in English have been included in this document to aid the reader. In
real cADL documents, comments can be written in any language.

3.3 Structure
cADL constraints are written in a block-structured style, similar to block structured programming lan-
guages like C. A typical block resembles the following (the recurring pattern /.+/ is a regular expres-
sion meaning “non-empty string”):

PERSON[001] matches {
name ∈ {

PERSON_NAME[002] ∈ {
forenames cardinality ∈ {1..*} ∈ {/.+/}
family_name ∈ {/.+/}
title ∈ {“Dr”, “Miss”, “Mrs”, “Mr”, ...}
Editors:{T Beale, S Heard} Page 27 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

cADL - Constraint ADL Archetype Definition Language (ADL)
Rev 1.1
}
}
addresses cardinality ∈ {1..*} ∈ {

LOCATION_ADDRESS[003] ∈ {
street_number existence ∈ {0..1} ∈ {/.+/}
street_name ∈ {/.+/}
locality ∈ {/.+/}
post_code ∈ {/.+/}
state ∈ {/.+/}
country ∈ {/.+/}

}
}

}

In the above, any identifier (shown in green) followed by the ∈ operator (equivalent text keyword:
matches or is_in) followed by an open brace, is the start of a “block”, which continues until the
closing matching brace (normally visually indented to come under the start of the line at the begin-
ning of the block).

The example above expresses a constraint on an instance of the type PERSON; the constraint is
expressed by everything inside the PERSON block. The two blocks at the next level define constraints
on properties of PERSON, in this case name and addresses. Each of these constraints is expressed in
turn by the next level containing constraints on further types, and so on. The general structure is
therefore a nesting of constraints on types, followed by constraints on properties (of that type), fol-
lowed by types (being the types of the attribute under which it appears) and so on.

3.3.1 Information Model Entities
It may by now be clear that the identifiers in the above could correspond to entities in an object-ori-
ented information model. A UML model compatible with the example above is shown in FIGURE 4.

Note that there can easily be more than one model compatible with a given fragment of cADL syntax,
and in particular, there may be more properties and classes in the reference model than are mentioned
in the cADL constraints. In other words, a cADL text includes constraints only for those parts of a
model which are useful or meaningful to constrain.

Constraints expressed in cADL cannot be stronger than those from the information model. For exam-
ple, the PERSON.family_name attribute is mandatory in the model in FIGURE 4, so it is not valid to

FIGURE 4 UML Model of PERSON

PERSON_NAME
forenames[1..*]: String
family_name[1]: String
title[0..1]: String

PARTY
details[*]: String
capabilities[*]: CAPABILITY

PERSON name
*

PARTY_NAME
 name

*

LOCATION_ADDRESS
street_number[0..1]: String
street_name[1]: String
locality[1]: String
post_code[1]: String
state[1]: String
country[1]: String

 addresses
*

Date of Issue: 24 Jan 2004 Page 28 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL) cADL - Constraint ADL
Rev 1.1
express a constraint allowing the attribute to be optional. In general, a cADL archetype can only fur-
ther constrain an existing information model. However, it must be remembered that for very generic
models consisting of only a few classes and a lot of optionality, this rule is not so much a limitation as
a way of adding meaning to information. Thus, for a demographic information model which has only
the types PARTY and PERSON, one can write cADL which defines the concepts of entities such as COM-
PANY, EMPLOYEE, PROFESSIONAL, and so on, in terms of constraints on the types available in the infor-
mation model.

To Be Continued: moe generic PERSON ex required

This general approach can be used to express constraints for instances of any information model. An
example showing how to express a constraint on the value property of an ELEMENT class to be a QUAN-
TITY with a suitable range for expressing blood pressure is as follows:

ELEMENT[10] matches { -- diastolic blood pressure
value matches {

QUANTITY matches {
magnitude matches {0..1000}
property matches {"pressure"}
units matches {"mm[Hg]"}

}
}

}

3.3.2 Existence, Cardinality and Occurrences
In any information model, there are existence invariants and cardinalities on properties (i.e. attributes
and relationships). Existence invariants say whether an attribute must exist, and are indicated by
“0..1” or “1” markers at line ends in UML diagrams (and usually mistakenly referred to as a “cardi-
nality of 1..1”). Cardinalities indicate limits for the number of members of container types such as
lists and sets. cADL makes the difference between these often confused characteristics clear. A fur-
ther constraint that can occur in a cADL model is denoted by an occurrences constraint, which is used
only on object nodes.

3.3.2.1 Existence
Existence constraints apply to properties only, and are expressed as follows:

QUANTITY matches {
units existence matches {0..1} matches {“mm[Hg]”}

}

The meaning of an existence constraint is to indicate whether a value - i.e. an object - is required in
runtime data for the property in question. The above example indicates that a value for the ‘units’
attribute is optional. The same logic applies whether the proeprty is of single or multiple cardinality,
i.e. whether it is a container or not. For multiple properties, the existence constraint indicates whether
the whole container (usually a list or set) is there; a further cardinality constraint (see below) indicates
how many members in the container are allowed.

Existence is shown using the same constraint language as the rest of the archetype definition. Exist-
ence constraints can take the values {0}, {0..0}, {0..1}, {1}, or {1..1}. The first two of these con-
straints may not seem initially obvious, but may be reasonable in some cases: they say that an
attribute must not be present in the particular situation modelled by the archetype. The default exist-
ence constraint, if none is shown, is {1..1}.
Editors:{T Beale, S Heard} Page 29 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

cADL - Constraint ADL Archetype Definition Language (ADL)
Rev 1.1
3.3.2.2 Cardinality and Built-in Container Types
While an existence constraint indicates the existence or not of a property value, a further constraint is
needed to indicate the multiplicity of the property - in other words, to indicate that the type of the
attribute is a container, e.g. List<T>. The cardinality constraint is used for this purpose.

Consider the following example:

HISTORY[001] occurrences ∈ {1} ∈ {
periodic ∈ {False}
events ∈ {

EVENT[002] ∈ {} -- 1 min sample
EVENT[003] ∈ {} -- 2 min sample
EVENT[004] ∈ {} -- 3 min sample

}
}

This fragment says that the type HISTORY has a property events. Since no existence constraint is
given, the default is {1..1}, meaning that events is a property of type EVENT in the reference model.
The meaning of the next three lines is that the runtime data must follow the model of any one of the
three constraints on EVENT. However, the intention of this fragment is most likely to be to constrain
the data to be a HISTORY of multiple events, where the property events is actually of type
List<EVENT>. To indicate this properly, a cardinality constraint is required on the events line, as in
the following:

HISTORY[001] occurrences ∈ {1} ∈ {
periodic ∈ {False}
events cardinality ∈ {*} ∈ {

EVENT[002] occurrences ∈ {0..1} ∈ {} -- 1 min sample
EVENT[003] occurrences ∈ {0..1} ∈ {} -- 2 min sample
EVENT[004] occurrences ∈ {0..1} ∈ {} -- 3 min sample

}
}

The keyword cardinality indicates firstly that the property events must be of a container type, such
as List<T>, Set<T>, Bag<T>, but does not indicate which - this is defined by the information model.
The {*} constraint indicates that there may be 0 to many EVENTs, by default assumed to be in a List,
i.e. an ordered, non-unique membership linear container. To specify a Set, the unordered; unique
qualifiers would be used, as per the following examples:

events cardinality ∈ {*; unordered} ∈ {
events cardinality ∈ {*; unique} ∈ {
events cardinality ∈ {*; unordered; unique} ∈ {

If cardinality is not mentioned, the property is assumed to be a non-container type, that is, a single
relationship to which cardinality does not apply.

Cardinality and existence constraints can co-occur, in order to indicate various combinations on a
container type property, e.g. that it is optional, but if present, is a container, as in the following:

events existence ∈ {0..1} cardinality ∈ {0..*} ∈ {
3.3.2.3 Occurrences
A constraint on occurrences is used only with cADL object nodes, to indicate how many times in
runtime data an instance of a given class conforming to a particular constraint can occur. In the exam-
ple below, three EVENT constraints are shown; the first one (“1 minute sample”) is shown as manda-
tory, while the other two are optional.

events cardinality ∈ {*} ∈ {
EVENT[002] occurrences ∈ {1..1} ∈ {} -- 1 min sample
Date of Issue: 24 Jan 2004 Page 30 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL) cADL - Constraint ADL
Rev 1.1
EVENT[003] occurrences ∈ {0..1} ∈ {} -- 2 min sample
EVENT[004] occurrences ∈ {0..1} ∈ {} -- 3 min sample

}

Another contrived example below expresses a constraint on instances of GROUP such that for GROUPs
representing tribes, clubs and families, there can only be one “head”, but there may be many mem-
bers.

GROUP[103] ∈ {
kind ∈ {/tribe|family|club/}
members cardinality ∈ {*} ∈ {

PERSON[104] occurrences ∈ {1} matches {
title ∈ {“head”}
...

}
PERSON[105] occurrences ∈ {0..*} matches {

title ∈ {“member”}
...

}
}

}

The first occurrences constraint indicates that a PERSON with the title “head” is mandatory in the
GROUP, while the second indicates that at runtime, instances of PERSON with the title “member” can
number from none to many. Occurrences may take the value of any range including {0..*}, meaning
that any number of instances of the given class may appear in data, each conforming to the one con-
straint block in the archetype. A single positive integer, or the infinity indicator, may also be used on
their own, thus: {2}, {*}. The default occurrences is none is mentioned is {1..1}.

3.3.3 Alternatives
Repeated blocks constraining objects of the same class can have two possible logical meanings, deter-
mined by the combination of the individual occurrences, and the cardinality of the containing prop-
erty. Consider the following example:

ELEMENT[04] matches { -- speed limit
value matches {

QUANTITY occurrences matches {0..1} matches {
magnitude matches {0..60}
property matches {"velocity"}
units matches {"mi/h"} -- miles per hour

}
QUANTITY occurrences matches {0..1} matches {

magnitude matches {0..100}
property matches {"velocity"}
units matches {"km/h"} -- km per hour

}
}

}

Here, the cardinality of the value attribute is 1..1 (the default), while the occurrences of both QUAN-
TITY constraints is optional, leading to the result that only one QUANTITY instance can appear in runt-
ime data, and it can match either of the constraints. Conversely, the following example describes a
HISTORY whose events property must contain one or more EVENTs, each of which can match any of
the enclosed EVENT constraints.

HISTORY[001] matches {
events cardinality matches {1..*} matches {

EVENT[002] occurrences matches {1..1} matches {...}
Editors:{T Beale, S Heard} Page 31 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

cADL - Constraint ADL Archetype Definition Language (ADL)
Rev 1.1
EVENT[003] occurrences matches {0..*} matches {...}
EVENT[004] occurrences matches {0..*} matches {...}
...

}
}

3.3.4 “Any” Constraints
There are two cases where it is useful to state a completely open, or “any”, constraint. The “any” con-
straint is shown by a single asterisk (*) in braces. The first is when it is desired to show explicitly that
some property can have any value, such as in the following:

PERSON[001] matches {
name existence matches {0..1} matches {*}
...

}

The “any” constraint on name means that any value permitted by the underlying information model is
also permitted by the archetype; however, it also provides an opportunity to specify an existence con-
straint which might be narrower than that in the information model. If the existence constraint is the
same, an “any” constraint on a property is equivalent to no constraint being stated at all for that prop-
erty in the cADL.

The second use of “any” as a constraint value is for types, such as in the following:

ELEMENT[04] matches { -- speed limit
value matches {

QUANTITY matches {*}
}

}

The meaning of this constraint is that in the data at runtime, the value property of ELEMENT must be of
type QUANTITY, but can have any value internally. This is most useful for constraining objects to be of
a certain type, without further constraining value, and is especially useful where the information
model contains subtyping, and there is a need to restrict data to be of certain subtypes in certain con-
texts.

3.3.5 Node Identification
In many of the examples above, some of the object identifiers (i.e. the typenames) are followed by a
node identifier, shown in brackets. Node identifiers are required for any node which is intended to be
addressable elsewhere in the cADL text, or in the runtime system. Logically, all parent nodes of an
identified node must also be identified back to the root node. The primary function of node identifiers
is in forming paths, enabling cADL nodes to be unambiguously referred to. The node identifier can
also perform a second function, that of giving a design-time meaning to the node, by equating the
node identifier to some description. Thus, in the example above, the ELEMENT node is identified by the
code [10], which can be designated elsewhere in an archetype as meaning “diastolic blood pressure”.

All nodes in a cADL text which correspond to nodes in data which might be referred to from else-
where in the archetype, or might be used for querying at runtime, require a node identifier, and it is
usually preferable to assign a design-time meaning, enabling paths and queries to be expressed using
logical meanings rather than meaningless identifiers. When data is created according to a cADL spec-
ification, the node ids are written into the data, providing a reliable way of finding data nodes, regard-
less of what other runtime names might have been chosen by the user for the node in question. There
are two reasons for this. Firstly, querying cannot rely on runtime names of nodes (e.g. names like “sys
BP”, “systolic bp”, “sys blood press.” entered by a doctor are unreliable for querying); secondly, it
Date of Issue: 24 Jan 2004 Page 32 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL) cADL - Constraint ADL
Rev 1.1
allows runtime data retrieved from a persistence mechanism to be re-associated with the cADL struc-
ture which was used to create it.

An example which clearly shows the difference between design-time meanings associated with node
ids and runtime names is the following, for the root node of an SECTION headings hierarchy represent-
ing the problem/SOAP headings (a simple heading structure commonly used by clinicians to record
patient contacts under top-level headings corresponding to the patient’s problem(s), and under each
problem heading, the headings “subjective”, “objective”, “assessment”, and “plan”).

SECTION[at0000] matches { -- problem
name matches {

CODED_TEXT matches {
code matches {[ac0001]}

}
}

In the above, the node id [at0000] is assigned a meaning such as “clinical problem” in the archetype
ontology section. The following lines express a constraint on the runtime name attribute, using the
internal code [ac0001]. The constraint [ac0001] is also defined in the archetype ontology section
with a formal statement meaning “any clinical problem type”, which could clearly evaluate to thou-
sands of possible values, such as “diabetes”, “arthritis” and so on. As a result, in the runtime data, the
node id corresponding to “clinical problem” and the actual problem type chosen at runtime by a user,
e.g. “diabetes”, can both be found. This enables querying to find all nodes which meaning “problem”,
or all nodes describing the problem “diabetes”. Internal [ac] codes are described in Local Constraint
Codes on page 45.

cADL on its own takes a minimalist approach to node identification. Node ids are required only
where it is necessary to create paths, for example in invariants or “use” statements. However, the
underlying reference model might have stronger requirements. The openEHR EHR information mod-
els [16] for example require that all nodes types which inherit from the class LOCATABLE have both a
meaning and a runtime name attribute. Only data types (such as QUANTITY, CODED_TEXT) and their
constituent types are exempt. The HL7 RIM [11] enforces a similar requirement: all archetype nodes
which are based on Acts must have an id and usually a code (these two attributes are the equivalent of
the openEHR meaning attribute, and the ADL node id); optionally they can also have a runtime name
in the code.original_text attribute.

3.3.6 Paths
Paths are used in cADL to refer to cADL nodes. Recalling that the general hierarchical structure of
cADL follows the pattern TYPE / property / TYPE / property /..., the syntax of paths takes exactly the
same form. Paths are thus formed from an alternation of node identifiers and property names. The
syntax used here is isomorphic to that used in the Xpath language, although the semantics of object
hierarchies are slightly different. The syntax model of the main part of a path in cADL is the same as
for dADL, i.e.:

[‘/’] attr_name [‘[’ object_id ‘]’] {‘/’ attr_name [‘[’ object_id ‘]’ ‘/’]}

However, property accessor names can be added at the end, separated by a dot (‘.’) in the usual
object-oriented fashion, i.e.

object_path {[‘.’ property_name]}

This latter form is described further below.

Paths always refer to object nodes, and can only be constructed to nodes having node ids. The slash
(‘/’) separator is used between path sections, and must always terminate a path. Lexically, a path can
end either in a property name or a property name followed by a type node id in square brackets, which
Editors:{T Beale, S Heard} Page 33 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

cADL - Constraint ADL Archetype Definition Language (ADL)
Rev 1.1
acts as an object identifier. The object identifier is required to differentiate between multiple children,
but can be omitted, in which case the first child is assumed. This is only a sensible thing to do if there
is known to be only one child, but is allowed, since it makes paths more readable in many cases. Unu-
sually for a path syntax, object identifiers can be required, even if the property corresponds to a single
relationship (as might be expected with the “name” property of an object) because in cADL, it is legal
to supply multiple alternative object constraints for a relationship node which has single cardinality.

Paths are either absolute, i.e. they are assumed to start from the top of the cADL structure, or else rel-
ative to the node in which they are mentioned. Absolute paths always commence with an initial slash
character, or with the id of the root node.

The following absolute paths are equivalent, and refer to a root node with the id [001]:

/
[001]/

The following absolute paths are equivalent, and refer to the object node at the “name” property of the
root node:

/name/
[001]/name/
[001]/name[004]/

The following are examples of relative paths:

name/ -- the object node at the “name” property
period/ -- period property of an object node
items[003]/ -- the object node with id [003] at the “items” property
items[017]/ -- the object node with id [017] at the “items” property

It is valid to add object-oriented attribute references to the end of a path, using he dot (‘.’) character, if
the underlying information model permits it, as in the following example.

/items/.count -- count attribute of the items property

These examples are physical paths because they refer to object nodes using codes. Physical paths can
be converted to logical paths using descriptive meanings for node identifiers, if defined. Thus, the fol-
lowing two paths might be equivalent:

[001]/members/
group/members/

The characters ‘.’ and ‘/’ must be quoted using the backslash (‘\’) character in logical path segments.

None of the paths shown here have any validity outside the cADL block in which they occur, since
they do not include an identifier of the enclosing document, normally an archetype. To reference a
cADL node in a document from elsewhere requires that the identifier of the document itself be pre-
fixed to the path, as in the following archetype example:

[openehr-ehr-entry.apgar-result.v1]/
data[at0001]/event[at0002]/data[at0003]/

This kind of path expression is necessary to form the larger paths which occur when archetypes are
composed to form larger structures.

3.3.7 Internal References
It is reasonably common that a particular inner block of cADL needs to be repeated later in the same
outer block. Using a previously defined part of a cADL archetype is effected with the use_node key-
word, in a line of the following form:

use_node TYPE object_path
Date of Issue: 24 Jan 2004 Page 34 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL) cADL - Constraint ADL
Rev 1.1
This statement says: use the node of type TYPE, found at (the existing) path object_path. The fol-
lowing example shows the definitions of the ADDRESS nodes for phone, fax and email for a home CON-
TACT being reused for a work CONTACT.

PERSON[001] ∈ {
identities ∈ {

...
}
contacts cardinality ∈ {0..*} ∈ {

CONTACT[002] ∈ { -- home address
purpose ∈ {...}
addresses ∈ {...}

}
CONTACT[003] ∈ { -- postal address

purpose ∈ {...}
addresses ∈ {...}

}
CONTACT[004] ∈ { -- home contact

purpose ∈ {...}
addresses cardinality ∈ {0..*} ∈ {

ADDRESS[005] ∈ { -- phone
type ∈ {...}
details ∈ {...}

ADDRESS[006] ∈ { -- fax
type ∈ {...}
details ∈ {...}

}
ADDRESS[007] ∈ { -- email

type ∈ {...}
details ∈ {...}

}
}

}
CONTACT[008] ∈ { -- work contact

purpose ∈ {...}
addresses cardinality ∈ {0..*} ∈ {

use_node ADDRESS [001]/contacts[004]/addresses[005]/ -- phone
use_node ADDRESS [001]/contacts[004]/addresses[006]/ -- fax
use_node ADDRESS [001]/contacts[004]/addresses[007]/ -- email

}
}

}

3.3.8 Invariants
While most constraints are expressible using the cADL structured syntax, there are some which are
more complex, and more easily expressed as invariants. Any constraint which relates more than one
property to another is in this category, as are most constraints containing mathematical or logical for-
mulae. An invariant statement is a first order predicate logic statement which can be evaluated to a
boolean result at runtime. Objects and properties are referred to using paths. Invariant statements
occur in sections at the end of type blocks, introduced by the invariant keyword, and are each pre-
ceded by a tag name, indicating the purpose of the invariant. The following simple example says that
the speed in kilometres of some node is related to the speed-in-miles by a factor of 1.6:

invariant
Editors:{T Beale, S Heard} Page 35 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

cADL - Constraint ADL Archetype Definition Language (ADL)
Rev 1.1
validity: [001]/speed[002]/kilometres/ = [003]/speed[004]/miles/ * 1.6
To Be Continued: the ‘1.6’ above should be coded and included in the ontol-

ogy section

Invariant expressions can include the following operators:

universal quantifier: for_all

boolean operators: not, and, or, xor, implies, exists

relational operators: =, <, >, <=, >=, !=

arithmetic operators: +, -, *, /, ^, //, \\

set operators: is_in (i.e. member_of)

The textual operators among the above all have symbolic equivalents, described at the beginning of
this chapter. Parentheses can be used to override standard precedence rules. Operands in an invariant
expression can be any of the following:

manifest constant: any constant of any primitive type, expressed according to the dADL syntax
for values

property reference: a path referring to a property, i.e. any path ending in “.property_name”

object reference: a path referring to an object node, i.e. any path ending in a node identifier

The only valid property reference operands (i.e. property and object nodepaths) which can appear in a
given invariant are those referring to nodes and properties inside the block in which the invariant
appears. The primary guideline for writing an invariant section is that it should be placed in the inner-
most block possible, and refer to entities via relative path names. Invariants occur only in cADL
object node blocks, and multiple invariant sections can occur in the one cADL archetype, giving the
following general structure:

TYPE[xx] ∈ {
xxxx ∈ {

TYPE ∈ {
xxx ∈ {xxxx}
xxxx ∈ {xxxx}

invariant
tag_name: invariant expression
tag_name: invariant expression

}
TYPE ∈ {

xxx ∈ {xxxx}

invariant
tag_name: invariant expression

}
}
invariant

tag_name: invariant expression
tag_name: invariant expression
tag_name: invariant expression

}

The invariant part of cADL is in effect a small syntax of its own; it is close to a subset of the OMG’s
emerging OCL (Object Constraint Language) syntax and is very similar to the assertion syntax which
has been used in the Object-Z [13] and Eiffel [9] languages and tools for over a decade. (See Kilov &
Ross [7] and Sowa [10] for an explanation of predicate logic in information modelling.)
Date of Issue: 24 Jan 2004 Page 36 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL) cADL - Constraint ADL
Rev 1.1
3.3.9 Archetype References
At any point in a cADL definition, other archetypes may be referred to, rather than defining the
desired block inline. This might happen inside a PERSON archetype for example, where an ADDRESS
archetype is referred to. The full semantics of archetype composition are described under Archetype
Composition on page 52. References to archetypes are themselves constraints on the possible arche-
types which are allowed at the point at which the reference occurs. Occasionally, they may refer to
specific archetypes, but in general, the intention of archetypes is to provide general re-usable models
of real world concepts; local constraints are left to templates. Accordingly, archetype references are
expressed using cADL invariant syntax, with the keyword use_archetype prepended. The following
example shows how the “Objective” SECTION in a problem/SOAP headings archetype refers to possi-
ble ENTRY and SECTION archetypes which are allowed under the items property.

SECTION[at2000] occurrences ∈ {0..1} ∈ { -- objective
items ∈ {

use_archetype ENTRY occurrences ∈ {0..1} ∈ {
identifier ∈ {/.*\.iso-ehr\.entry\..*\..*/}

}
use_archetype SECTION occurrences ∈ {0..1} ∈ {

identifier ∈ {/.*\.iso-ehr\.section\..*\..*/}
}

}
}

Here, every constraint inside the block starting on a use_archetype line contains constraints not on
the type referred to in the starting line (such as ENTRY), but on the archetype as a whole. Other con-
straints are possible as well, including that the allowed archetype must contain a certain keyword, or a
certain path. The latter is quite powerful – it allows archetypes to be linked together on the basis of
context. For example, under a “genetic relatives” heading in a Family History Organiser archetype,
the following logical constraint might be used:

use_archetype ENTRY occurrences matches {0..*} matches {
exists Family History Subject/subject/.relation
and then Family History Subject/subject/.relation matches {

CODED_TEXT matches {
code matches {[ac0003]} -- “parent” or “sibling”

}
}

}
To Be Determined: the exact syntax for the path and the constraint
here needs to be worked out. The path cannot use local archetype ids since
we do not know what archetype we are talking about.

3.4 Constraints on Primitive Types
While constraints on complex types follow the rules described so far, constraints on attributes of
primitive types in cADL can be expressed without type names, and omitting one level of braces, as
follows:

some_attr matches {some_pattern}

rather than:

some_attr matches {
BASIC_TYPE matches {

some_pattern
}

}

Editors:{T Beale, S Heard} Page 37 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

cADL - Constraint ADL Archetype Definition Language (ADL)
Rev 1.1
Since all leaf attributes of all object models are of primitive types, or lists or sets of them, cADL
archetypes using the brief form for primitive types are significantly less verbose overall, as well as
being more directly comprehensible to human readers. cADL does not however oblige the brief form
described here, and the more verbose one can be used. In either case, the syntax of the pattern appear-
ing within the final pair of braces obeys the rules described below.

3.4.1 Constraints on String
Strings can be constrained in two ways: using a fixed string, and using a regular expression. An
example of the first is:

species matches {“platypus”}

This forces the runtime value of the species attribute of some object to take the value “platypus”. In
almost all cases, this kind of string constraint should be avoided, since it usually renders the body
of the archetype language-dependent. Exceptions are proper names (e.g. “NHS”, “Apgar”), product
tradenames (but note even these are typically different in different language locales, even if the differ-
ent names are not literally translations of each other). The preferred way of constraing string
attributes in a language independent way is with local [ac] codes. See Local Constraint Codes on page
45.

The second way of constraining strings is with regular expressions, a widely used syntax for express-
ing patterns for matching strings. The regular expression syntax used in cADL is a proper subset of
that used in the Perl language (see [17] for a full specification of the regular expression language of
Perl). Three uses of it are accepted in cADL:

string_attr matches {/regular expression/}
string_attr matches {=~ /regular expression/}
string_attr matches {!~ /regular expression/}

The first two are identical, indicating that the attribute value must match the supplied regular expres-
sion. The last indicates that the value must not match the expression. If the delimiter character is
required in the pattern, it must be quoted with the backslash (‘\’) character, or else alternative delimit-
ers can be used, enabling more comprehensible patterns. A typical example is regular expressions
including units. The following two patterns are equivalent:

units matches {/km\/h|mi\/h/}
units matches {^km/h|mi/h^}

The rules for including special characters within strings follow those for dADL. In regular expres-
sions, the small number of special characters are quoted according to the rules of Perl regular expres-
sions; all other characters are quoted using the ISO and XML conventions described in the section on
dADL.

The regular expression patterns supported in cADL are as follows.

Atomic Items

. match any single character. E.g. / ... / matches any 3 characters which occur with a space
before and after;

[xyz] match any of the characters in the set xyz. E.g. /[0-9]/ matches any string containing a
single decimal digit;

[a-m] match any of the characters in the set of characters formed by the continuous range from
a to m. E.g. /[0-9]/ matches any single character string containing a single decimal digit;
Date of Issue: 24 Jan 2004 Page 38 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL) cADL - Constraint ADL
Rev 1.1
[^xyz] match any character except those in the set of characters formed by the continuous
range from a to m. E.g. /[^0-9]/ matches any single character string as long as it does not
contain a single decimal digit;

Grouping

(pattern)parentheses are used to group items; any pattern appearing within parentheses
treated as an atomic item for the purposes of the occurrences operators. E.g. /([0-9][0-
9])/ matches any 2-digit number.

Occurrences

* match 0 or more of the preceding atomic item. E.g. /.*/ matches any string; /[a-z]*/
matches any non-empty alphabetic string;

+ match 1 or more occurrences of the preceding atomic item. E.g. /a.+/ matches any string
starting with ‘a’, followed by at least one further character;

? match 0 or 1 occurrences of the preceding atomic item. E.g. /ab?/ matches the strings “a”
and “ab”;

{m,n} match m to n occurrences of the preceding atomic item. E.g. /ab{1,3}/ matches the
strings “ab” and “abb” and “abbb”; /[a-z]{1,3}/ matches all alphabetic strings of one to
three characters in length;

{m,} match at least m occurrences of the preceding atomic item;

{,n} match at most n occurrences of the preceding atomic item;

{m} match exactly m occurrences of the preceding atomic item;

Special Character Classes

\d, \D match a decimal digit character; match a non-digit character;

\s, \S match a whitespace character; match a non-whitespace character;

Alternatives

pattern1|pattern2 match either pattern1 or pattern2. E.g. /lying|sitting|standing/
matches any of the words “lying”, “sitting” and “standing”.

A similar warning should be noted for the use of regular expressions to constraint strings: they
should be limited to non-ligusitically dependent patterns, such as proper and scientific names. The
use of regular expressions for constraints on normal words will render an archetype linguistically
dependent, and potentially unusable by others.

3.4.2 Constraints on Integer
Integers can be constrainted with a single integer value, an integer interval, or a list of integers. For
example:

length matches {1000} -- limit to 100 exactly
length matches {950..1050} -- allow +/- 50
length matches {0..1000}

The allowable syntax for integer values in ranges is as follows:

infinity, -infinity, * indicates infinity. ‘*’ means plus or minus infinity depending on
context;

N exactly this value, where N is an integer, or the infinity indicator;
!= N does not equal N;
Editors:{T Beale, S Heard} Page 39 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

cADL - Constraint ADL Archetype Definition Language (ADL)
Rev 1.1
Intervals can be expressed using the interval syntax from dADL, described in Intervals of Ordered
Primitive Types on page 22. Intervals may be combined in integer constraints, using the semicolon
character (‘;’) as follows:

normal_range matches {|10..100|}
critical_range matches {|5..9; 101..110|}

Lists of integers expressed in the syntax from dADL, described in Lists of Primitive Types on page
22, can be used as a constraint, e.g.

magnitude matches {0, 5, 8}

Note that a list used in this example indicates that the magnitude must match any one of the values in
the list; if a cadinality indicator had been used, as in the following, the meaning would have been that
magnitude is constrained to be the whole list of integers:

magnitude cardinality matches {0..*} matches {0, 5, 8}

To Be Determined: In the future, functions may be allowed e.g.
{f(x):(x\\4=0)} means “x ok if divisible by 4”

To Be Determined: An alternative syntax for interval values is as used
by HL7, e.g. [lower;upper]. This might be a better syntax. Qs: what is more
readable, how are disjoint intervals & exclusion specified in this syntax?

3.4.3 Constraints on Real
Constraints on Real follow exactly the same syntax as for Integers, except that all real numbers are
indicated by the use of the decimal point and at least one succeeding digit, which may be 0. Typical
examples are:

magnitude matches {5.5} -- fixed value
magnitude matches {|5.5..6.0|} -- interval
magnitude matches {5.5, 6.0, 6.5} -- list

3.4.4 Constraints on Boolean
Boolean runtime values can be constrained to be True, False, or either, as follows:

some_flag matches {True}
some_flag matches {False}
some_flag matches {True, False}

3.4.5 Constraints on Character
Characters can be constrained in cADL using manifest values enclosed in single quotes, or using sin-
gle-character regular expression elements, also enclosed in single quotes, as per the following exam-
ples:

color_name matches {‘r’}
color_name matches {‘[rgbcmyk]’}

The only allowed elements of the regular expression syntax in character expressions are the follow-
ing:

• any item from the Atomic Items list above;

• any item from the Special Character Classes list above;

• the ‘.’ character, standing for “any character”;

• an alternative expression whose parts are any item types, e.g. ‘a’|’b’|[m-z]

3.4.6 Constraints on Dates, Times and Durations
Date of Issue: 24 Jan 2004 Page 40 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL) cADL - Constraint ADL
Rev 1.1
Patterns
Dates, times, and date/times (i.e. timestamps), can be constrained in two ways. The first one, usually
used in archetypes uses patterns based on the ISO 8601 date/time syntax, which indicate which parts
of the date or time must be supplied. The following table shows the valid patterns which can be used,
and the types implied by each pattern. The patterns are formed from the abstract pattern yyyy-mm-dd
hh:mm:ss (itself formed by translating each field of an ISO 8601 date/time into a letter representing
its type), with either ‘?’ (meaning optional) or ‘X’ (not allowed) characters substituted in appropriate
places.

Literals

The second way of constraining dates and times, which will most likely occur only in local templates,
is using actual values and ranges, in the same way as for Integers and Reals. In this case, the limit val-
ues are specified using the same patterns from the above table, but with numbers in the positions
where ‘X’ and ‘?’ do not appear. For example, the pattern yyyy-??-XX could be transformed into
1995-??-XX to mean any partial date in 1995. Constraints are then expressed according to the follow-
ing examples:

1995-??-XX -- any partial date in 1995
|< 09:30:00| -- any time before 9:30 am
|<= 09:30:00| -- any time at or before 9:30 am

Implied Type Pattern Explanation

Date yyyy-mm-dd full date must be specified

Date, Partial Date yyyy-mm-?? optional day;
e.g. day in month forgotten

Date, Partial Date yyyy-??-?? optional month, day;

i.e. any date allowed

Partial Date yyyy-??-XX optional month, no day;

(any examples?)

Time hh:mm:ss full time must be specified

Partial Time hh:mm:XX no seconds;
e.g. appointment time

Partial Time hh:??:XX optional minutes, no seconds;

e.g. normal clock times

Time, Partial Time hh:??:?? optional minutes, seconds;
i.e. any time allowed

Date/Time yyyy-mm-dd hh:mm:ss full date/time must be specified

Date/Time,
Partial Date/Time

yyyy-mm-dd hh:mm:?? optional seconds;

e.g. appointment date/time

Partial Date/Time yyyy-mm-dd hh:mm:XX no seconds;
e.g. appointment date/time

Partial Date/Time yyyy-mm-dd hh:??:XX no seconds, minutes optional;
e.g. in patient-recollected
date/times

Date/Time,
Partial Date/Time

Partial Date/Partial Time

yyyy-??-?? ??:??:?? minimum valid date/time constraint
Editors:{T Beale, S Heard} Page 41 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

cADL - Constraint ADL Archetype Definition Language (ADL)
Rev 1.1
|> 09:30:00| -- any time after 9:30 am
|>= 09:30:00| -- any time at or after 9:30 am
2004-05-20..2004-06-02 -- a date range

Duration Constraints
Durations are constrained using absolute ISO 8601 values, or ranges of the same, e.g.:

P0d0h1m0s -- 1 minute
P1d8h0m0s -- 1 day 8 hrs
|P0S..P1m30s| -- Reasonable time offset of first apgar sample

3.4.7 Constraints on Lists of Primitive types
In many cases, the type in the information model of an attribute to be constrained is a list or set of
primitive types. This must be indicated in cADL using the cardinality keyword (as for complex
types), as follows:

some_attr cardinality matches {0..*} matches {some_pattern}

The pattern to match in the final braces will then have the meaning of a list or set of value constraints,
rather than a single value constraint.

To Be Determined: how to define such lists? How to indicate which val-
ues in teh data correspeond to which values in teh list; and if lists are
open or closed?

3.5 cADL Object Model
FIGURE 5 illustrates the essentials of the cADL object model.
Date of Issue: 24 Jan 2004 Page 42 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL) cADL - Constraint ADL
Rev 1.1
FIGURE 5 cADL Object Model

CADL_ITEM

is_root [1]: Boolean

CADL_NODE

child_at_node (..): CADL_ITEM
path[1]: ADL_PATH

CADL_OBJECT_NODE
is_archetype_ref [1]: Boolean

CADL_OBJECT_ITEM
type_name[1]: String
node_id[1]: String
any_value_allowed [1]: Boolean
occurrences[1]: Interval<Integer>

is_addressable [1]: Boolean

CADL_REL_NODE
attr_name [1]: String
is_multiple [1]: Boolean
existence [1]:
Interval<Integer>

CADL_OBJECT_
SIMPLE

CADL_OBJECT_LEAF

CADL_OBJECT_
NODE_REF
ref_path[1]: ADL_PATH

children
*

parent 1

children
*

CADL_OBJECT_
RESOURCE_REF
reference[0..1]: StringCADL_CARDINALITY

occurrences[1]:
Interval<Integer>
is_ordered[1]: Boolean
is_unique[1]: Boolean
is_list[1]: Boolean

cardinality 1

C_SIMPLE
item 1

C_BOOLEAN C_INTEGER C_REAL C_STRING

C_DURATION C_TIME C_DATE C_DATE_TIME

ADL_ASSERTION
invariants *
Editors:{T Beale, S Heard} Page 43 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

cADL - Constraint ADL Archetype Definition Language (ADL)
Rev 1.1
Date of Issue: 24 Jan 2004 Page 44 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL) ADL - Archetype Definition Language
Rev 1.1
4 ADL - Archetype Definition Language

This section describes ADL archetypes as a whole, adding a small amount of detail to the descriptions
of dADL and cADL already given. The important topic of the relationship of the cADL-encoded
definition section and the dADL-encoded ontology section is discussed in detail. In this section,
only standard ADL (i.e. the cADL and dADL constructs and types described so far) is assumed.
Archetypes for use in particular domains can also be built with more efficient syntax and domain-spe-
cific types, as described in Predefined Type Libraries on page 59, and the succeeding sections.

An ADL archetype follows the structure shown below:

archetype
archetype_id

specialize
parent_archetype_id

concept
coded_concept_name

description
dADL meta-data section

definition
cADL structural section

ontology
dADL definitions section

4.1 Basics

4.1.1 Keywords
ADL has a small number of keywords which are reserved for use in archetype declarations, as fol-
lows:

• archetype, specialise/specialize, concept,

• description, definition, ontology

All of these words can safely appear as identifiers in the definition and ontology sections.

4.1.2 Node Identification
In the definition section of an ADL archetype, a particular scheme of codes is used for node identi-
fiers as well as for denoting constraints on textual (i.e. language dependent) items. Codes are either
local to the archetype, or from an external lexicon. This means that the archetype description is the
same in all languages, and is available in any language that the codes have been translated to. All term
codes are shown in brackets ([]). Codes used as node identifiers and defined within the same arche-
type are prefixed with “at” and have only 4 digits, e.g. [at0010]. Specialisations of locally coded
concepts have the same root, followed by “dot” extensions, e.g. [at0010.2]. From a terminology
point of view, these codes have no implied semantics - the “dot” structuring is used as an optimisation
on node identification.

4.1.3 Local Constraint Codes
A second kind of local code is used to stand for constraints on textual items in the body of the arche-
type. Although these could be included in the main archetype body, because they are language- and/or
terminology-sensitive, they are defined in the ontology section, and referenced by codes prefixed by
“ac”, e.g. [ac0009]. The use of these codes is described in section 4.4.4
Editors:{T Beale, S Heard} Page 45 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

ADL - Archetype Definition Language Archetype Definition Language (ADL)
Rev 1.1
4.2 Header Sections

4.2.1 Archetype Section
This section introduces the archetype and must include an identifier. A typical archetype section is
as follows:

archetype
mayo.openehr-ehr-entry.haematology.v1

The multi-axial identifier identifies archetypes in a global space. The syntax of the identifier is
described under Archetype Identification on page 17 in The openEHR Archetype System.

4.2.2 Specialise Section
This optional section indicates that the archetype is a specialisation of some other archetype, whose
identity must be given. Only one specialisation parent is allowed. An example of declaring specialisa-
tion is as follows:

archetype
mayo.openehr-ehr-entry.haematology-cbc.v1

specialise
mayo.openehr-ehr-entry.haematology.v1

Here the identifier of the new archetype is derived from that of the parent by adding a new section to
its domain concept section. See Archetype Identification on page 17 in The openEHR Archetype Sys-
tem.

Note that both the US and British english versions of the word “specialise” are valid in ADL.

4.2.3 Concept Section
All archetypes represent some real world concept, such as a “patient”, a “blood pressure”, or an “ante-
natal examination”. The concept is always coded, ensuring that it can be displayed in any language
the archetype has been translated to. A typical concept section is as follows:

concept
[at0010] -- haematology result

In this concept definition, the term definition of [at0010] is the proper description corresponding to
the “haematology-cbc” section of the archetype id above.

4.2.4 Description Section
The description section of an archetype contains descriptive information, or what some people
think of as document “meta-data”, i.e. items that can be used in repository indexes and for searching.
The dADL syntax is used for the description, as in the following example:

description
author = <"Sam Heard <s.heard@littlerock.con>">
submission = <

organisation = <"openEHR Foundation">
date = <2003-06-10>

>
revision = <

identifier = <"1.2">
author = <"Thomas Beale <t.beale@home.net>">
date = <2003-12-11>

>
status = <"draft">
Date of Issue: 24 Jan 2004 Page 46 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL) ADL - Archetype Definition Language
Rev 1.1
purpose = <
items(“en”) = <"general model of haematology lab results">
items(“de”) = <"Allgemeines Modell fuer Haematologie Laborwerte">

>
use = <

items(“en”) = <"can be used directly or specialised for\
particular result types">

items(“de”) = <"kann entweder direkt benutzt werden, oder speziell \
fuer besondere Ergebnissarten">

>
misuse = <>

A number of details are worth noting here. Firstly, the free hierarchical structuring capability of
dADL is exploited for expressing the “deep” structure of the submission, revision, purpose and
use items. Secondly, the dADL qualified list form is used to allow multiple translations of the pur-
pose and use to be shown. Lastly, empty items such as misuse (structured if there is data) are shown
with just one level of empty brackets. The above example shows meta-data based on the HL7 Tem-
plates Proposal [12] and the meta-data of the SynEx and GeHR archetypes.

Which descriptive items are required will depend on the semantic standards imposed on archetypes
by health standards organisations and/or the design of archetype repositories and is not specified by
ADL.

4.3 Definition Section
The definition section contains the main formal definition of the archetype, and is written in the
Constraint Definition Language (cADL). A typical definition section is as follows:

definition
ENTRY[at0000] ∈ { -- blood pressure measurement

name ∈ { -- any synonym of BP
CODED_TEXT ∈ {

code ∈ {
CODE_PHRASE ∈ {[ac0001]}

}
}

}
data ∈ {

HISTORY[at9001] ∈ { -- history
events cardinality ∈ {1..*} ∈ {

EVENT[at9002] occurrences ∈ {0..1} ∈ {-- baseline
name ∈ {

CODED_TEXT ∈ {
code ∈ {

CODE_PHRASE ∈ {[ac0002]}
}

}
}
data ∈ {

LIST_S[at1000] ∈ { -- systemic arterial BP
items cardinality ∈ {2..*} ∈ {

ELEMENT[at1100] ∈ { -- systolic BP
name ∈ { -- any synonym of 'systolic'

CODED_TEXT ∈ {
code ∈ {

CODE_PHRASE ∈ {[ac0002]}
}

Editors:{T Beale, S Heard} Page 47 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

ADL - Archetype Definition Language Archetype Definition Language (ADL)
Rev 1.1
}
}
value ∈ {

QUANTITY ∈ {
magnitude ∈ {0..1000}
property ∈ {[properties::0944]}

-- “pressure”
units ∈ {[units::387]} -- “mm[Hg]”

}
}

}
ELEMENT[at1200] ∈ { -- diastolic BP

name ∈ { -- any synonym of 'diastolic'
CODED_TEXT ∈ {

code ∈ {
CODE_PHRASE ∈ {[ac0003]}

}
}

}
value ∈ {

QUANTITY ∈ {
magnitude ∈ {0..1000}
property ∈ {[properties::0944]}

-- “pressure”
units ∈ {[units::387]} -- “mm[Hg]”

}
}

}
ELEMENT[at9000] occurrences ∈ {0..*} ∈ {*}

-- unknown new item
}

...

This definition expresses constraints on instances of the types ENTRY, HISTORY, EVENT, LIST_S, ELE-
MENT, QUANTITY, and CODED_TEXT so as to allow them to represent a blood pressure measurement,
consisting of a history of measurement events, each consisting of at least systolic and diastolic pres-
sures, as well as any number of other items (expressed by the [at9000] “any” node near the bottom).

4.4 Ontology Section

4.4.1 Overview
The ontology section of an archetype is expressed in dADL, and is where codes representing node
meanings and constraints on text or terms, bindings to terminologies, other ontological definitions
(such as quantitative definitions), and language translations are added. The following example shows
the general layout of this section.

ontology
primary_language = <“en”>
languages_available = <“en”, “de”>
terminologies_available = <“snomed_ct”, ...>

term_definitions(“en”) = <
...

>

term_definitions(“de”)= <
Date of Issue: 24 Jan 2004 Page 48 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL) ADL - Archetype Definition Language
Rev 1.1
description = <translation = <“acme_translation@acme.com.de”>
...

>

term_binding(“snomed_ct”) = <
...

>

constraint_definitions(“en”) = <
...

>

constraint_binding(“snomed_ct”) = <
...

>

The term_definitions section is mandatory, and must be defined for each translation carried out.

Each of these sections can have its own meta-data, which appears within description sub-sections,
such as the one shown above providing translation details.

4.4.2 Ontology Header Statements
The first three headings in the ontology section describe the primary language in which the arche-
type was authored (essential for evaluating natural language quality), the total languages available in
the archetype, and the terminology bindings available. There can be only one primary language. The
languages available list should be updated every time a translation of a term_definition and
constraint_definition section is added, and must include the primary language as well. The
terminologies_available statement includes the identifiers of all terminologies for which
term_binding sections have been written.

4.4.3 Term_definition Section
This section is where all archetype local terms (that is, terms of the form [atNNNN]) are defined. The
following example shows an extract from the english and german term definitions for the archetype
local terms in a problem/SOAP headings archetype. Each term is defined using tagged values. ADL
does not currently force any particular tags - validation of term definitions can be left until after the
parsing process. However, it is expected that almost all term and constraint definitions will include at
least the tags “text” and “description”, which are akin to the usual rubric, and full definition found in
terminologies like SNOMED-CT.

term_definitions(“en”) = <
items(“at0001”) = <

text = <"problem/SOAP headings">
description = <"SOAP heading structure for multiple problems">

>
items(“at0000”) = <

text = <"problem">
description = <"The problem experienced by the subject of care to \

which the contained information relates">
>
...
items(“at4000”) = <

text = <"plan">
description = <"The clinician's professional advice">

>
>

Editors:{T Beale, S Heard} Page 49 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

ADL - Archetype Definition Language Archetype Definition Language (ADL)
Rev 1.1
term_definitions(“de”) = <
description = <

translation = <
provenance = <"mdarlison@chimera.upstairs.uk">
quality_control = <"British Medical Translator’s id 00400595”>

>
>
items(“at0001”) = <

text = <"Problem/SOAP Schema">
description = <"SOAP-Schlagwort-Gruppierungsschema fuer mehrfache \

Probleme">
>
items(“at0000”) = <

text = <"klinisches Problem">
description = <"Das Problem des Patienten worauf sich diese \

Informationen beziehen">
>
...
items(“at4000”) = <

text = <"Plan">
description = <"Klinisch-professionelle Beratung des Pflegenden">

>
>

In some cases, term definitions may have been lifted from existing terminologies (only a safe thing to
do if the definitions exactly match the need in the archetype). To indicate where definitions come
from, a “provenance” tag can be used, as follows:

items(“at4000”) = <
text = <"plan">;
description = <"The clinician's professional advice">;
provenance = <"ACME_terminology(v3.9a)">

>

Note that this does not indicate a binding to any term; bindings are described in the binding sections.

4.4.4 Constraint_definition Section
The constraint_definition section is of exactly the same form as the term_definition section,
and provides the definitions - i.e. the meanings - of the local constraint codes, which are of the form
[acNNNN]. Each such code refers to some constraint such as “any term which is a subtype of ‘hepati-
tis’ in the ICD9AM terminology”; the constraint definitions do not provide the constraints them-
selves, but define the meanings of such constraints, in a manner comprehensible to human beings, and
usable in GUI applications. This may seem a superfluous thing to do, but in fact it is quite important.
Firstly, term constraints can only be expressed with respect to particular terminologies - a constraint
for “kind of hepatitis” would be expressed in different ways for each terminology which the archetype
is bound to. For this reason, the actual constraints are defined in the constraint_binding section.
An example of a constraint term definition for the hepatitis constraint is as follows:

items(“at1015”) = <
text = <"type of hepatitis">
description = <"any term which means a kind of viral hepatitis">

>

Note that while it often seems tempting to use classification codes, e.g. from the ICD vocabularies,
these will rarely be much use in terminology or constraint definitions, because it is nearly always
descriptive, not classificatory terms which are needed.
Date of Issue: 24 Jan 2004 Page 50 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL) ADL - Archetype Definition Language
Rev 1.1
4.4.5 Term_binding Section
This section is used to describe the equivalences between archetype local terms and terms found in
external terminologies. The purpose is solely for allowing query engine software which wants to
search for an instance of some external term to determine what equivalent to use in the archetype.
Note that this is distinct from the process of embedding mapped terms in runtime data, which is also
possible with the data models of HL7v3, openEHR, and CEN 13606.

A typical term binding section resembles the following:

term_binding(“umls”) = <
items(“at0000”) = <[umls::C124305]> -- apgar result
items(“at0002”) = <[umls::0000000]> -- 1-minute event
items(“at0004”) = <[umls::C234305]> -- cardiac score
items(“at0005”) = <[umls::C232405]> -- respiratory score
items(“at0006”) = <[umls::C254305]> -- muscle tone score
items(“at0007”) = <[umls::C987305]> -- reflex response score
items(“at0008”) = <[umls::C189305]> -- color score
items(“at0009”) = <[umls::C187305]> -- apgar score
items(“at0010”) = <[umls::C325305]> -- 2-minute apgar
items(“at0011”) = <[umls::C725354]> -- 5-minute apgar
items(“at0012”) = <[umls::C224305]> -- 10-minute apgar

>

Each entry simply indicates which term in an external terminology is equivalent to the archetype
internal codes. Note that not all internal codes necessarily have equivalents: for this reason, a termi-
nology binding is assumed to be valid even if it does not contain all of the internal codes.

To Be Determined: future possibility: more than one binding to the
same terminology for different purposes, or by different authors?

To Be Determined: need to handle numerous small domains defined by one
authority e.g. HL7.

4.4.6 Constraint_binding Section
The last of the ontology sections formally describes text constraints from the main archetype body.
They are described separately because they are terminology dependent, and because there may be
more than one for a given logical constraint. A typical example follows:

constraint_binding(“snomed_ct”) = < -- is-a problem type
items(“ac0001”) = <query(“terminology”,

“terminology_id = ‘snomed_ct’ AND
has_relation [102002] with_target [128004]”)>

items(“ac0002”) = <query(“terminology”, -- subjective
“terminology_id = ‘snomed_ct’ AND
synonym_of [128025]”)>

items(“ac0003”) = <query(“terminology”, -- objective
“terminology_id = ‘snomed_ct’ AND
synonym_of [128009]”)>

>

In this example, each local constraint code is formally defined to refer to the result of a query to a
service, in this case, a terminology service which can interrogate the Snomed-CT terminology.

To Be Determined: Note that the query syntax used above is only for
illustration; syntaxes for use with services like OMG HDTF TQS and HL7 CTS
are being developed.
Editors:{T Beale, S Heard} Page 51 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Relationships Archetype Definition Language (ADL)
Rev 1.1
5 Archetype Relationships

This section describes the creation of new archetypes based on existing ones. There are two ways this
can occur: due to versioning and due to specialisation. Revisions are included here, although they do
not create a new archetype. As soon as we speak of related archetypes, we must also understand the
relationship of the data. Accordingly, a notion of archetype conformance must be defined, as follows:

an archetype B conforms to an archetype A if all data created according to B are guaranteed to conform also to A

Specialisation creates conformant archetypes, while versioning does not.

5.1 New Versions
New versions of an existing archetype can be created. A new version is required for any change to an
archetype which fixes an error, and creates as a result a non-conforming archetype. A “non-conform-
ing” archetype is one whose data does not conform to the previous archetype. A data conversion algo-
rithm must always be supplied with a new version. Versions are indicated in the archetype identifier,
meaning that two versions of the same logical archetype are technically speaking two different arche-
types.

To Be Determined: version number series - see earlier in archetype
identifier section

5.2 New Revisions
Archetypes can also be revised, meaning that changes which do not compromise data created accord-
ing to the earlier revision can be incorporated without creating a new version or a specialisation. Situ-
ations where revisions are used include:

• the addition of a new foreign language translation

• the addition of a new terminology binding

• weakening of some constraints, e.g. cardinalities being changed from 1..1 to 0..1

• changes to items in the description

Since a revised archetype is 100% backwards compatible with its predecessor, revision does not cause
the archetype id to be changed. Revisions are indicated in the meta-data, and are numbered according
to the series {1.0, 1.1, 1.2, ... 2.0}.

5.3 Archetype Composition
Archetypes are designed to be composed into larger structures which describe whole sections of data
in a system, for example whole documents in an EHR system, or an entire PERSON object in a demo-
graphic service. The use_archetype keyword introduces a constraint which evaluates to a set of pos-
sible archetypes which can be attached at the point where it appears. At runtime, the user has to
choose one of these. Archetype references thus define the possible archetype compositions at runt-
ime, although in some cases, they may mention a single specific archetype, meaning that no further
choice is required at runtime. Generally archetypes should allow the widest possible choice of arche-
types at each next level, with templates being used to define particular compositions (or “chaining”)
of archetypes. Typical compositions of archetypes based on the CEN 13606 EHR standard informa-
tion model are COMPOSITION / SECTION / ... / SECTION / ENTRY.
Date of Issue: 24 Jan 2004 Page 52 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL) Archetype Relationships
Rev 1.1
5.3.1 Paths in Archetype Compositions
When archetypes are composed, paths can be used to refer to an item in a lower archetype, starting
from the topmost archetype. For example, the combination of and SECTION archetype for “birth” and
an ENTRY archetype for “apgar result”, will result in a set of paths which can be used to refer to all
items in the apgar result, starting from the top organiser. The following path provides a typical exam-
ple of such a path, in this case, referring to the cardiac score of an apgar result within a birth recording
organiser structure.

/[openehr.openehr-ehr-organiser.birth.v1]/items[birth]/items[apgar]
/[openehr.openehr-ehr-entry.apgar.v1]/data[history]/events
[1min sample]/data[apgar list]/items[cardiac score]

All composite paths must be formed using external paths, i.e. paths containing the archetype identifier
as the first section.

5.4 Specialisation
Archetypes can be specialised. The primary rule for specialisation is that data created according to
the more specialised archetype are guaranteed to conform to the parent archetype. Specialised arche-
types have an identifier based on the parent archetype id, but with a modified section, as described
earlier.

Since ADL archetypes are designed to be usable in a standalone fashion, they include all the text of
their definition. This applies to specialised archetypes as well, meaning that the contents of the ADL
file of a specialised archetype contains all the relevant parts from its parent, with additions or modifi-
cations according to the specialisation rules. In an analogy with object-oriented class definitions,
ADL archetypes can be thought of as always being in “inheritance-flattened” form. Validation of a
specialised archetype requires that its parent be present, and relies on being able to locate equivalent
sections using node identifiers. For this reason, nodes in specialised archetypes carry either the same
identifiers as the corresponding nodes in the parent, or else a node identifier derived by “specialising”
the parent node id, using “dot” notation. The following describes in detail how archetypes are special-
ised.

5.4.1 Object Nodes
An object node may be specialised by:

• reducing the occurrences constraint to any interval fitting inside the occurrences interval
of the corresponding node in the parent;

• splitting the node into multiple nodes, each of a “subtype” of the parent node. Each child
node must contain constraints which inside the set of the corresponding parent nodes. Sub-
typed nodes are indicated with node ids which are specialisations of the parent node id, and
have specialised meanings. For example, a parent node id of [at0203] may have specialisa-
tions formed by adding a dot and further digits, e.g. [at0203.1], [at0203.2] etc. The ter-
minological meanings of the new codes should be subtypes of that of the original parent
node.

• “use” nodes which referred to the original node in the parent archetype may be left intact,
meaning that any of the new nodes may be used, or may be redefined to use a smaller subset
of the child nodes.

5.4.2 Relationship Nodes
A relationship node may be specialised by:
Editors:{T Beale, S Heard} Page 53 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Relationships Archetype Definition Language (ADL)
Rev 1.1
• narrowing its existence or cardinality constraint to one fitting inside the corresponding con-
straints of the parent relationship.

5.4.3 Leaf Nodes
A leaf object node may be specialised by:

• narrowing the valid values allowed by its constraints, for example, reducing integer inter-
vals; reducing the set of allowed string patterns and so on.

5.4.4 Text constraint target nodes
Text constraint target nodes defined in the constraint bindings section of the archetype may only be
narrowed to evaluate to a subset of the terms resulting from evaluating the parent constraint. The
actual set of terms resulting from evaluating such a constraint may change, due to evolution of termi-
nology (the set of subtypes of hepatitis has expanded in recent years, for example), but the set defini-
tions must remain the same. If an original constraint indicated only terms from ICD10, for example, a
specialised archetype could not allow SNOMED terms in the same place, since they would not be
valid according to the parent constraint.

5.4.5 Archetype Term Definitions
Local term definitions defined in the terminology part of the archetype can only be added to, with
terms which are specialised versions of the existing terms.
Date of Issue: 24 Jan 2004 Page 54 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL) Relationship with Language and Ontology
Rev 1.1
6 Relationship with Language and Ontology

6.1 The Problem of Terminology
ADL archetypes take a particular stance on interfacing with the terminology world. The basic tenets
of the relationship between archetypes (whether or not expressed in ADL) and ontological and termi-
nological resources relate to the linguistic elements in an archetype definition, which are as follows:

• the names of nodes, e.g. “severity”;

• the allowed values of textual nodes, e.g. “low”, “mild”, “medium”, “high”;

• codes, usually from classification, attached to name/value nodes.

The last of these is easy to achieve, and it is the first two that concern us here. The tenets are as fol-
lows:

1. every linguistic element in an archetype must have a defined meaning, available in each lan-
guage for which a translation has been done.

The consequence of this is that each such element must be coded within the archetype. The naïve
approach is to think that coded terms from external terminologies can be used directly for this pur-
pose. A number of factors make this impossible (in the following “terminology” refers to descriptive
terminologies like Snomed-CT, or ontologies, like Galen, not classifications like ICD10):

2. there may be no terminology containing the required term;

3. there may be one or more terminologies containing what appears lexically to be the required
term, but there is no guarantee that any of these really does encode the intended meaning; in
any case, there would be no way to resolve multiple conpeting definitions;

4. even if the term is found in a terminology, there might not be the required language in the its
translations; since most external terminologies are large, there is no easy way to effect a
translation, apart from an unofficial local translation of one or two terms.

The underlying reason for these problems is that existing terminologies and ontologies are largely
contextless - they are intended for many uses - while archetypes are focussed ontological “capsules”
of meaning - the words and terms used in them relate specifically to the subject of the archetype.
Thus, in general, the correspondence between the required names and meanings in a given archetype,
and the (roughly) matching terms in an external terminology will always be approximate, and may
even be misleading or wrong. The only conclusion that can be drawn from this state of affairs is:

5. all names and textual value constraints in archetypes have to be locally defined within the
archetype.

This has a number of fortuitous side-effects:

• archetypes can be written without the use of terminologies (this is not necessarily a recom-
mendation, of course);

• translations can occur on a per-archetype basis, making the job of translation much smaller
(it may only be 20 terms) and of higher-quality (the exact meanings of the terms and value
constraints is clear within the archetype, whereas translators of whole terminologies always
face the problem of multiple possible meanings of each word);
Editors:{T Beale, S Heard} Page 55 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Relationship with Language and Ontology Archetype Definition Language (ADL)
Rev 1.1
6.2 The Need for Shared Meaning
At first sight, while local coding in archetypes makes archetypes easier and more correct, it appears to
forego the supposed most important advantage of shared terminology, which is shared meaning. The
assumption has always been that the very fact of common use of a large terminology means that
human users and computer systems can understand any datum the same way if it is coded with the
same code. Common use of terms in data by software is the key to any kind of reliable inferencing in
decision support, so these requirements are not unimportant. There are two responses to this. Firstly,
in many cases the supposed sharability might not exist, given the problem of multiple meanings of
terms and words, depending on context; in general practice, mental health, and other disciplines
where description is widely used, assuming the same word means the same thing is probably danger-
ous. However, in more formulaic data, such as pathology test results, claim reimbursement forms, and
hospital discharges and referrals, the same code in two places can probably be more safely assumed to
mean the same thing.

Accordingly, archetypes must at least provide a way of linking to external terminologies, even if they
are not used as the primary definition of terms. The “binding” sections of the ontology section of an
archetype provide this feature, enabling two kinds of correspondence to be stated:

• between a local [atNNNN] code and a (hopefully) equivalent code in an external terminol-
ogy;

• between a local constraint code [acNNNN] and the result of a query to an external terminol-
ogy;

Since bindings might be required to more than one terminology, the ADL syntax can be used to define
each set of bindings on a per-terminology basis. Note that, as pointed out earlier, some or even most
terms in an archetype might not be available in a particular terminology, so the size of a given binding
might be much smaller than the set of primary local definitions in the archetype.

The overall result of the ADL approach is to enable archetypes to be self-defining, while including
relationships to as many external terms as deemed reliable for computational use. This is most likely
to be safest when interfacing with high-quality, targetted ontologies, such as for particular disease cat-
egories or treatment approaches.
Date of Issue: 24 Jan 2004 Page 56 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL) The ADL Parsing Process
Rev 1.1
7 The ADL Parsing Process

7.1 Overview
FIGURE 6 provides a graphical illustration of the ADL parsing process. ADL file is converted by the
ADL parser into an ADL parse tree. This tree is an in-memory object structure representation of the
semantics of the archetype, in a form convenient for further processing. The ADL tree is independent
of reference models however, and needs to be processed further by an archetype builder, to create a
valid archetype in object form for runtime use in a particular information system. As an input, the
builder requires the specification of the reference information model - i.e. runtime access to the actual
model of information whose instances will form the data of the final system. This might be via CASE
tool files, XMI (XML model interchange files) or even validated programming language files.

The parse tree resulting from parsing an ADL file is shown on the right. It consists of alternate layers
of object and relationship nodes, each containing the next level of nodes. At the leaves are leaf nodes
- object nodes constraining primitive types such as String, Integer etc. There are also “use” nodes
which represent internal references to other nodes, text constraint nodes which refer to a text con-
straint in the constraint binding part of the archetype, and archetype constraint nodes, which represent
constraints on other archetypes allowed to appear at a given point. The full list of node types is as fol-
lows:

Object node: any interior node representing a constraint on instances of some type, e.g. ENTRY,
SECTION;

Property node: a node representing any property (relationship or attribute) of an object type;

definition

ontology

term_

root

FIGURE 6 Parsed ADL Structure

parser

ADL
parse tree

ADL
file

ADL

object
parse tree

builder
archetype

information
model

specification

→A→C

binding

obj node

relationship nodeprimitive obj node →A

use node

use archetype

→C terminology constraintkey
Editors:{T Beale, S Heard} Page 57 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The ADL Parsing Process Archetype Definition Language (ADL)
Rev 1.1
Leaf object node: an object node representing a constraint on a basic (built-in) object type;

Object reference node (“use” node): a node which refers to another object node already defined.
The reference is made using a path;

Text constraint reference node: a node which refers to an object node defining a constraint on a
plain text or coded term entity, which appears in the constraint binding section of the
archetype; the reference is made using an [acNNNN] code;

Archetype reference: a node whose statements define a constraint on other archetypes which are
allowed to appear at that point in the archetype.

To Be Continued:
Date of Issue: 24 Jan 2004 Page 58 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL) Predefined Type Libraries
Rev 1.1
8 Predefined Type Libraries

8.1 Introduction
Standard ADL natively recognises only common primitive types, such as Integer, Real, String,
Boolean, and data/time types. However, in each domain or subdomain in which a language like ADL
might be used, there are certain commonly used types whose semantics are agreed by a large number
of users. By type here, we mean a formal type of which data could be an instance, and about which a
fragment of cADL could be written. Each such type has a UML model associated with it. For exam-
ple, the type DOG might be described by the UML in FIGURE 7 below. Valid ADL statements based
on this model are shown below; the first form using standard ADL, the second using a new syntax
element (contrived for this example) representing DOG instances.

If within a domain or community of users, the above model of DOG is agreed, then similarly, ADL
fragments consistent with this definition are also agreed in principle. In general, in a library of prede-
fined types, there are type definitions, and ADL fragments. The latter usually follow the syntax of the
main part of the language, but in some cases, may bring in small changes to the syntax, for efficiently
representing constraint values in a way recognised by the community in question. The effect of pro-
viding special syntax is usually to remove one ‘block’ (enclosed by braces). An example of dedicated
syntax is that for the class CODE_PHRASE in the following section; the use of the
[terminology_id::code_phrase] syntax replaces the following lines of ADL:

CODE_PHRASE matches {
terminology_id matches {“terminology_id”}
code_string matches {“code_phrase”}

}

8.2 Implementing Type Libraries
To Be Continued: plug-in modules

8.3 Library Provenance
There are two ways to view standardised types:

• as an optional part of ADL, which can be used by anyone who finds them useful. In this
case, changes to the definitions are done by the community maintaining of ADL itself;

• as an information model standardised by some body, in which case, the model is maintained
by that body.

FIGURE 7 Example ADL Predefined Type

DOG
name[1]: String
breed[1]: String
is_pure_bred[1]: Boolean

DOG[at0000] ∈ {
name ∈ {“fido”}
breed ∈ {“rottweiler”}
is_pure_bred ∈ {True}

}

{$fido/rottweiler/pure$}
Editors:{T Beale, S Heard} Page 59 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Predefined Type Libraries Archetype Definition Language (ADL)
Rev 1.1
The following sections describe libraries of general-purpose predefined types in the first category.
Date of Issue: 24 Jan 2004 Page 60 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL) Clinical ADL Predefined Type Library
Rev 1.1
9 Clinical ADL Predefined Type Library

9.1 Introduction
This section describes some predefined types and semantics common to science and clinical medi-
cine. The type library is classified into the major categories terminological, quantitative, and
date/time. For many of these types, there is the possibility of using a specific ADL syntax, in addition
to the usual means of expression syntax provided by standard ADL.

9.2 Terminological Types
FIGURE 8 illustrates a set of text and coded text types typically used in health information systems.
The types TEXT and CODED_TEXT represent respectively a text string in a given language, and a text
string which has a corresponding code in some terminology or knowledge resource.

The type CODE_PHRASE represents the actual code(s), which are assumed to have been generated by a
terminology service of some kind. A code-phrase may be a single code, or a phrase expressing a coor-
dination of codes which represents e.g. a word phrase in some language. The following subsections
show how these types are constrained in ADL.

9.2.1 TEXT
Instances of the class TEXT can be constrained in standard cADL, using regular expressions. The main
use of such expressions is to control the characters which can be used in various attributes such as
person names; also to define patterns for things like patient identifiers, e.g.

pat_id matches {/[a-z]{1,3}-[0-9]{6,10}/}

9.2.2 CODED_TEXT
Items of CODED_TEXT can be constrained using standard cADL, as in the following pattern:

CODED_TEXT matches {
code matches {} -- see below
mappings matches {

TERM_MAPPING matches {
...

}
}

}

9.2.3 CODE_PHRASE

FIGURE 8 TEXT Types

CODE_PHRASE
terminology_id[1]: String
code_string[1]: String

TEXT
value[1]: String

TERM_MAPPING
match[1]: Integer
purpose[1]: TEXT

CODED_TEXT

target 1

 mappings
0..*

 code
1

1
 language

1 charset
Editors:{T Beale, S Heard} Page 61 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Clinical ADL Predefined Type Library Archetype Definition Language (ADL)
Rev 1.1
9.2.3.1 Value Expressions
A CODE_PHRASE instance can be expressed in the form of an identifier of an external resource term
code from an identified vocabulary. Terms are always enclosed in brackets (“[]”), and are either local
to the archetype - i.e. of the form [local::atNNNN] or from some external vocabulary, in which case
they take the form [TERMINOLOGY_ID::CODE], or [TERMINOLOGY_ID(version)::CODE]. Examples
of terms are:

term = <[local::at0200]>
term = <[ICD10AM::F24]>
term = <[ICD10AM(2001)::F24]>
terms = <[ICD10AM::F24], [ICD10AM::F24]> -- List of ICD10AM codes

9.2.3.2 Constraint Expressions
In cADL, the code attribute from the CODED_TEXT example above is constrained using standard cADL
as follows:

code matches {
CODE_PHRASE matches {

terminology_id matches {“xxxx”}
code_string matches {“cccc”}

}
}

or using two types of efficient, built-in literal expressions. Both avoid the need to state the class name.
The first indicates that a CODE_PHRASE instance is constrained to a set which is the result of some
interaction with a knowledge service; such expressions are stored in the ontology part of an arche-
type, and referenced with an [acNNNN] identifier, as follows:

code matches {[ac0016]} -- type of respiratory illness
property matches {[ac0034]} -- acceleration

Here, the [acNNNN] codes might refer to queries into a terminology and units service, respectively,
such as the following (in dADL):

items(“ac0016”) = <query(“terminology”, “terminology_id = ICD10AM and ...”)
items(“ac0034”) = <query(“units”, “X matches ‘DISTANCE/TIME^2’”)

The second kind of CODE_PHRASE constraint is one in which the terminology id, and actual code or set
of codes forming the allowed set of values is given inline, as in the following examples:

code matches {[local::at0016]}

code matches {[hl7_ClassCode::EVN, OBS]}

code matches {
[local::

at1311, -- Colo-colonic anastomosis
at1312, -- Ileo-colonic anastomosis
at1313, -- Colo-anal anastomosis
at1314, -- Ileo-anal anastomosis
at1315] -- Colostomy

}

There is an important semantic difference between the two forms of constraint. The first approach
says that the allowed set of values is known outside the archetype, in some other knowledge resource,
while the second states that the allowed set is defined by the archetype itself - i.e. the archetype is the
primary knowledge resource in this particular case.
Date of Issue: 24 Jan 2004 Page 62 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL) Clinical ADL Predefined Type Library
Rev 1.1
9.2.4 Queries
The queries referred to above may be included in dADL data, e.g.:

items(“ac0001”) = <query(“terminology”,
“terminology_id = ICD10 AND code matches ‘J*’”)>

This query is to an assumed “terminology” service in the environment (such as an implementation of
the OMG HDTF Terminology Query Service, or the HL7 Clinical Terminology Service), and speci-
fies that any term in ICD10 whose code matches the pattern ‘J*’ (any respiratory problem) should be
returned.

All queries are assumed to return a List<String>; that is, it is assumed that the query interface will
convert any return data, no matter how complex, into string form. The most typical example of this is
when terminology “terms” are returned; they can be expressed as a string using the syntax described
above, i.e. “[TERMINOLOGY_ID::CODE]”, e.g. “[ICD10::J10]”. Returned values can then be con-
verted to a specific type, based on the type of the node containing the “acNNNN” reference.

A more generalised string format would be XML instance, and/or dADL (converted from XML
instance or structured form).

To Be Determined: a standard way of expressing a code in a terminology
has not yet been agreed by HL7, CEN. The syntax above is currently used in
openEHR.

The only constraint on query syntax in dADL is that it follow the general form:

query(“service_name”, “query text”)

No assumption is made about the valid services or query syntaxes.

9.3 Quantitative Types
FIGURE 9 illustrates a partial model of a set of common quantitative types used in science and clini-
cal medicine.

9.3.1 QUANTITY
To Be Determined: this section under construction

This type is used to represent measured continuous variables, and consists of a magnitude, units and
property. Accuracy and precision can also be supplied if required. The following example shows a
constraint corresponding to a blood pressure, expressed using any pressure unit.

FIGURE 9 Quantitative Types

INTERVAL<T:ORDERED>
lower[1]: T
upper[1]: T
upper_unbounded[1]: Boolean
lower_unbounded[1]: Boolean

ORDINAL

value[1]: Integer

symbol[1]: TEXT

QUANTITY

magnitude[1]: Double

precision[1]: Integer

accuracy[0]: Real

accuracy_is_percent[0]: Boolean

units[1]: String

property[1]: CODED_TEXT

COUNTABLE

magnitude[1]: Integer

ORDERED
Editors:{T Beale, S Heard} Page 63 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Clinical ADL Predefined Type Library Archetype Definition Language (ADL)
Rev 1.1
definition
QUANTITY matches {

magnitude matches {0.0..500.0}
units matches {[ac0001]}

}
ontology

...
items(“ac0001”) = <query(“units”, “unit matches ‘FORCE/DISTANCE^2’”)>

In the above, the expression “FORCE/DISTANCE^2” is an instance of a code phrase from a terminology
called “units”; i.e. most likely a post-coordination from units term engine.

9.3.2 COUNTABLE
The COUNTABLE type is used to represent inherently integral things, such as “a number of steps”, “pre-
vious number of pregnancies” and so on. Countables have no units or property attributes, and are con-
strained using standard cADL, such as the following:

previous_pregnancies matches {
COUNTABLE matches {

magnitude matches {0..20}
}

}

9.3.3 ORDINAL
An ordinal value is defined as one which is ordered without being quantified, and is represented by a
symbol and an integer number. Ordinals can be constrained by standard cADL, although in a rela-
tively lengthy way:

item matches {
ORDINAL matches {

value matches {0}
symbol matches {

CODED_TEXT matches {
code matches {[local::at0014]} -- no heartbeat

}
}

}
ORDINAL matches {

value matches {1}
symbol matches {

CODED_TEXT matches {
code matches {[local::at0015]} -- less than 100 bpm

}
}

}
ORDINAL matches {

value matches {2}
symbol matches {

CODED_TEXT matches {
code matches {[local::at0016]} -- greater than 100 bpm

}
}

}
}

The above says that the allowed values of the attribute value is the set of ORDINALs represented by
three alternative constraints, each indicating what the numeric value of the ordinal in the series, as
Date of Issue: 24 Jan 2004 Page 64 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL) Clinical ADL Predefined Type Library
Rev 1.1
well as its symbol, which is a CODED_TEXT. A more efficient way of representing the same constraint
is using the following syntax:

item matches {0:[local::at0014], 1:[local::at0015], 2:[local::at0016]}

In the above expression, each item in the list corresponds to a single ORDINAL, and the list corre-
sponds to an implicit definition of an ORDINAL type, in terms of the set of its allowed values.

9.3.4 INTERVAL
Intervals of the ORDERED types are constrained using the standard ADL syntax element “..” between
any two instances of a subtype of ORDERED.

To Be Continued:

9.4 Date/Time Types
FIGURE 10 illustrates a set of basic data/time types for use in clinical medicine. In addition to ADL’s
assumed primitive types of DATE, TIME, DATE_TIME and DURATION, three partial types are added, and
a timezone attribute is added to the types TIME and DATE_TIME. All of these types are constrainable by
the standard cADL date and time constraint statements (see Constraints on Dates, Times and Dura-
tions on page 40); whenever an “XX” or “??” is encountered in a constraint pattern, one of the partial
types can be inferred.

9.5 Additions to the dADL Model
The following figure shows changes to the dADL class model to accomodate the semantics described
above. The only addition is that of the the DADL_OBJECT_TERM class.

FIGURE 10 Date/Time Types

timezone

1 DURATION

days[1]: Integer

hours[1]: Integer

minutes[1]: Integer

seconds[1]: Integer

fractional_second[0..1]:

Double

DATE_TIME

year[1]: Integer

month[1]: Integer

day[1]: Integer

hour[1]: Integer

minute[1]: Integer

second[1]: Integer

fractional_second[0..1]:

Double

DATE

year[1]: Integer

month[1]: Integer

day[1]: Integer

TIME

hour[1]: Integer

minute[1]: Integer

second[1]: Integer

fractional_second[0..1]:

DoublePARTIAL_
DATE

month_known[1]:

Boolean

PARTIAL_TIME

minute_known[1]: Boolean

timezone

1

PARTIAL_DATE_TIME

month_known[1]: Boolean

day_known[1]: Boolean

hour_known[1]: Boolean

minute_known[1]: Boolean

second_known[1]: Boolean
Editors:{T Beale, S Heard} Page 65 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Clinical ADL Predefined Type Library Archetype Definition Language (ADL)
Rev 1.1
9.6 Additions to the cADL Model
The following figure shows changes to the cADL class model to accomodate the semantics described
above. In fact, the only change is the addition of the CADL_OBJECT_TERM class.

FIGURE 11 Additions to the dADL model

DADL_OBJECT_LEAF

DADL_OBJECT_TERM
item[1]: CODE_PHRASE

CADL_OBJECT_TERM
c_terminology_id[0..1]:
TERMINOLOGY_ID
c_code_string[0..1]: List<String>

FIGURE 12 Additions to the cADL model

CADL_OBJECT_
RESOURCE_REF
reference[0..1]: String

CADL_OBJECT_LEAF

CADL_OBJECT_ORDINAL
items[1]: List<ORDINAL>

reference

0..1
Date of Issue: 24 Jan 2004 Page 66 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL) References
Rev 1.1
J References

Publications

1 Beale T. Archetypes: Constraint-based Domain Models for Future-proof Information Systems.
OOPSLA 2002 workshop on behavioural semantics.
Available at http://www.deepthought.com.au/it/archetypes.html.

2 Beale T. Archetypes: Constraint-based Domain Models for Future-proof Information Systems. 2000.
Available at http://www.deepthought.com.au/it/archetypes.html.

3 Beale T, Heard S. A Shared Language for Archetypes and Templates - Part I. 2003.
Available at http://www.deepthought.com.au/health/arche-
types/archetype_language_2v0.6.2.doc.

4 Beale T, Heard S. A Shared Language for Archetypes and Templates - Part II. 2003.
Available at http://www.deepthought.com.au/health/arche-
types/archetype_language.doc.

5 Beale T. A Short Review of OCL.
See http://www.deepthought.com.au/it/ocl_review.html.

6 Dolin R, Elkin P, Mead C et al. HL7 Templates Proposal. 2002.
Available at http://www.hl7.org.

7 Kilov H, Ross J. Information Modelling: an Object-Oriented Approach. Prentice Hall 1994.

8 Gruber T R. Toward Principles for the Design of Ontologies Used for Knowledge Sharing. in Formal
Ontology in Conceptual Analysis and Knowledge Representation. Eds Guarino N, Poli R. Kluwer Ac-
ademic Publishers. 1993 (Aug revision).

9 Meyer B. Eiffel the Language (2nd Ed). Prentice Hall, 1992.

10 Sowa J F. Knowledge Representation: Logical, philosophical and Computational Foundations. 2000,
Brooks/Cole, California.

Resources

11 HL7 v3 RIM. See http://www.hl7.org.

12 HL7 Templates Proposal. See http://www.hl7.org.

13 Object Z. REF REQUIRED.

14 OWL - Web Ontology Language.
See http://www.w3.org/TR/2003/CR-owl-ref-20030818/.

15 openEHR. Knowledge-enabled EHR and related specifications.
See http://www.openEHR.org.

16 openEHR. EHR reference model.
See http://www.openEHR.org.

17 Perl Regular Expressions. REF REQUIRED.

18 Schematron. See http://www.ascc.net/xml/resource/schematron/schematron.html.

19 SynEx project, UCL. http://www.chime.ucl.ac.uk/HealthI/SynEx/.
Editors:{T Beale, S Heard} Page 67 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

http://www.deepthought.com.au/it/archetypes.html
http://www.deepthought.com.au/it/archetypes.html
http://www.deepthought.com.au/health/archetypes/archetype_language_2v0.6.2.doc
http://www.deepthought.com.au/health/archetypes/archetype_language_2v0.6.2.doc
http://www.deepthought.com.au/health/archetypes/archetype_language.doc
http://www.deepthought.com.au/health/archetypes/archetype_language.doc
http://www.deepthought.com.au/it/ocl_review.html
http://www.hl7.org
http://www.hl7.org
http://www.hl7.org
http://www.w3.org/TR/2003/CR-owl-ref-20030818/
http://www.openEHR.org
http://www.openEHR.org
http://www.ascc.net/xml/resource/schematron/schematron.html
http://www.chime.ucl.ac.uk/HealthI/SynEx/

References Archetype Definition Language (ADL)
Rev 1.1
Date of Issue: 24 Jan 2004 Page 68 of 69 Editors:{T Beale, S Heard}

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetype Definition Language (ADL)
Rev 1.1

Editors:{T Beale, S Heard} Page 69 of 69 Date of Issue: 24 Jan 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

END OF DOCUMENT

	Archetype Definition Language (ADL)
	Copyright Notice
	Amendment Record
	Table of Contents
	1 Introduction
	1.1 Purpose
	1.2 Overview
	1.2.1 What is ADL?
	1.2.2 Relationship to Other Information Artifacts
	1.2.3 Structure
	FIGURE 1 ADL Archetype Structure

	1.2.4 An Example
	1.2.5 Relationship to Object Models
	FIGURE 2 Relationship of ADL with Object Models

	1.3 Relationship to Other Formalisms
	1.3.1 XML
	1.3.2 XML-schema
	1.3.3 OWL (Web Ontology Language)
	1.3.4 OCL (Object Constraint Language)
	1.3.5 KIF (Knowledge Interchange Format)
	1.3.6 Schematron

	1.4 Tools

	2 dADL - Data ADL
	2.1 Overview
	2.2 Basics
	2.2.1 Keywords
	2.2.2 Comments
	2.2.3 Quoting
	2.2.4 Information Model Identifiers
	2.2.5 Instance Identifiers
	2.2.6 Semi-colons

	2.3 Structure
	2.3.1 Content
	2.3.1.1 Empty Sections

	2.3.2 Anonymous Objects
	2.3.3 Identified Objects
	2.3.3.1 Decomposed Data
	2.3.3.2 Shared Objects

	2.3.4 Scope of a dADL Document

	2.4 Leaf Data
	2.4.1 Atomic Types
	2.4.1.1 Character Data
	2.4.1.2 String Data
	2.4.1.3 Integer Data
	2.4.1.4 Real Data
	2.4.1.5 Boolean Data
	2.4.1.6 Dates and Times

	2.4.2 Intervals of Ordered Primitive Types
	2.4.3 Lists of Primitive Types

	2.5 Paths
	2.5.1 Comparison with Xpath

	2.6 dADL Object Model
	FIGURE 3 dADL Object Model

	3 cADL - Constraint ADL
	3.1 Overview
	3.2 Basics
	3.2.1 Keywords
	3.2.2 Comments
	3.2.3 Information Model Identifiers
	3.2.4 Node Identifiers
	3.2.5 Natural Language

	3.3 Structure
	3.3.1 Information Model Entities
	FIGURE 4 UML Model of PERSON

	3.3.2 Existence, Cardinality and Occurrences
	3.3.2.1 Existence
	3.3.2.2 Cardinality and Built-in Container Types
	3.3.2.3 Occurrences

	3.3.3 Alternatives
	3.3.4 “Any” Constraints
	3.3.5 Node Identification
	3.3.6 Paths
	3.3.7 Internal References
	3.3.8 Invariants
	3.3.9 Archetype References

	3.4 Constraints on Primitive Types
	3.4.1 Constraints on String
	3.4.2 Constraints on Integer
	3.4.3 Constraints on Real
	3.4.4 Constraints on Boolean
	3.4.5 Constraints on Character
	3.4.6 Constraints on Dates, Times and Durations
	3.4.7 Constraints on Lists of Primitive types

	3.5 cADL Object Model
	FIGURE 5 cADL Object Model

	4 ADL - Archetype Definition Language
	4.1 Basics
	4.1.1 Keywords
	4.1.2 Node Identification
	4.1.3 Local Constraint Codes

	4.2 Header Sections
	4.2.1 Archetype Section
	4.2.2 Specialise Section
	4.2.3 Concept Section
	4.2.4 Description Section

	4.3 Definition Section
	4.4 Ontology Section
	4.4.1 Overview
	4.4.2 Ontology Header Statements
	4.4.3 Term_definition Section
	4.4.4 Constraint_definition Section
	4.4.5 Term_binding Section
	4.4.6 Constraint_binding Section

	5 Archetype Relationships
	5.1 New Versions
	5.2 New Revisions
	5.3 Archetype Composition
	5.3.1 Paths in Archetype Compositions

	5.4 Specialisation
	5.4.1 Object Nodes
	5.4.2 Relationship Nodes
	5.4.3 Leaf Nodes
	5.4.4 Text constraint target nodes
	5.4.5 Archetype Term Definitions

	6 Relationship with Language and Ontology
	6.1 The Problem of Terminology
	6.2 The Need for Shared Meaning

	7 The ADL Parsing Process
	7.1 Overview
	FIGURE 6 Parsed ADL Structure

	8 Predefined Type Libraries
	8.1 Introduction
	FIGURE 7 Example ADL Predefined Type

	8.2 Implementing Type Libraries
	8.3 Library Provenance

	9 Clinical ADL Predefined Type Library
	9.1 Introduction
	9.2 Terminological Types
	FIGURE 8 TEXT Types
	9.2.1 TEXT
	9.2.2 CODED_TEXT
	9.2.3 CODE_PHRASE
	9.2.3.1 Value Expressions
	9.2.3.2 Constraint Expressions

	9.2.4 Queries

	9.3 Quantitative Types
	FIGURE 9 Quantitative Types
	9.3.1 QUANTITY
	9.3.2 COUNTABLE
	9.3.3 ORDINAL
	9.3.4 INTERVAL

	9.4 Date/Time Types
	FIGURE 10 Date/Time Types

	9.5 Additions to the dADL Model
	FIGURE 11 Additions to the dADL model

	9.6 Additions to the cADL Model
	FIGURE 12 Additions to the cADL model

	J References

