
The openEHR Common Information Model
Rev 1.5

Editors:{T Beale, S Heard}
REFERENCE MODEL

The openEHR Common Information Model

Editors:{T Beale, S Heard}1, {D Kalra, D Lloyd}2

Revision: 1.5

Pages: 45

1. Ocean Informatics Australia

2. Centre for Health Informatics and Multi-professional Educa-
tion, University College London
, {D Kalra, D Lloyd} Page 1 of 45 Date of Issue: 09 Mar 2004

© 2003,2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

© 2003,2004 The openEHR Foundation

The openEHR foundation
is an independent, non-profit community, facilitating the creation and sharing

of health records by consumers and clinicians via open-source, standards-
based implementations.

email: info@openEHR.org web: http://www.openEHR.org

Founding
Chairman

David Ingram, Professor of Health Informatics, CHIME, University
College London

Founding
Members

Dr P Schloeffel, Dr S Heard, Dr D Kalra, D Lloyd, T Beale

Patrons To Be Announced

The openEHR Common Information Model
Rev 1.5
Copyright Notice

© Copyright openEHR Foundation 2001 - 2004

All Rights Reserved

1. This document is protected by copyright and/or database right throughout the
world and is owned by the openEHR Foundation.

2. You may read and print the document for private, non-commercial use.
3. You may use this document (in whole or in part) for the purposes of making

presentations and education, so long as such purposes are non-commercial and
are designed to comment on, further the goals of, or inform third parties about,
openEHR.

4. You must not alter, modify, add to or delete anything from the document you
use (except as is permitted in paragraphs 2 and 3 above).

5. You shall, in any use of this document, include an acknowledgement in the
form:

"© Copyright openEHR Foundation 2001-2004. All rights reserved.
www.openEHR.org"

6. This document is being provided as a service to the academic community and
on a non-commercial basis. Accordingly, to the fullest extent permitted under
applicable law, the openEHR Foundation accepts no liability and offers no
warranties in relation to the materials and documentation and their content.

7. If you wish to commercialise, license, sell, distribute, use or otherwise copy the
materials and documents on this site other than as provided for in paragraphs 1
to 6 above, you must comply with the terms and conditions of the openEHR
Free Commercial Use Licence, or enter into a separate written agreement with
openEHR Foundation covering such activities. The terms and conditions of the
openEHR Free Commercial Use Licence can be found at
http://www.openehr.org/free_commercial_use.htm
Date of Issue: 09 Mar 2004 Page 2 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003,2004 The openEHR Foundation

The openEHR Common Information Model
Rev 1.5
Amendment Record

Issue Details Who Completed

1.5 CR-000080. Remove ARCHETYPED.concept - not needed in
data
CR-000081. LINK should be unidirectional.
CR-000083. RELATED_PARTY.party should be optional.
CR-000085. LOCATABLE.synthesised not needed. Add vocabu-
lary for FEEDER_AUDIT.change_type.
CR-000086. LOCATABLE.presentation not needed.
CR-000091. Correct anomalies in use of CODE_PHRASE and
DV_CODED_TEXT. Changed PARTICIPATION.mode, changed
ATTESTATION.status, RELATED_PARTY.relationship,
VERSION_AUDIT.change_type, FEEDER_AUDIT.change_type to
to DV_CODED_TEXT.
CR-000094. Add lifecycle state attribute to VERSION; correct
DV_STATE.
Formally validated using ISE Eiffel 5.4.

DSTC

T Beale,
S Heard

DSTC

09 Mar 2004

1.4.12 CR-000071. Allow version ids to be optional in
TERMINOLOGY_ID.
CR-000044. Add reverse ref from VERSION_REPOSITORY<T>

to owner object.
CR-000063. ATTESTATION should have a status attribute.
CR-000046. Rename COORDINATED_TERM and
DV_CODED_TEXT.definition.

T Beale

D Lloyd

D Kalra
T Beale

25 Feb 2004

1.4.11 CR-000056. References in COMMON.Version classes should be
OBJECT_REFs.

T Beale 02 Nov 2003

1.4.10 CR-000045. Remove VERSION_REPOSITORY.status D Lloyd,
T Beale

21 Oct 2003

1.4.9 CR-000025. Allow ATTESTATIONs to attest parts of COMPOSI-

TIONs. Change made due to CEN TC/251 joint WGM, Rome,
Feb 2003.
CR-000043. Move External package to Common RM and
rename to Identification (incorporates CR-000036 - Add
HIER_OBJECT_ID class, make OBJECT_ID class abstract.)

D Kalra,
D Lloyd,
T Beale

09 Oct 2003

1.4.8 CR-000041. Visually differentiate primitive types in openEHR
documents.

D Lloyd 04 Oct 2003

1.4.7 CR-000013. Rename key classes according to CEN
ENV13606.

S Heard, D
Kalra, T Beale

15 Sep 2003

1.4.6 CR-000012. Add presentation attribute to LOCATABLE.
CR-000027. Move feeder_audit to LOCATABLE to be compati-
ble with CEN 13606 revision. Add new class FEEDER_AUDIT.

D Kalra 20 Jun 2003

1.4.5 CR-000020. Move VERSION.charset to DV_TEXT, territory to
TRANSACTION. Remove VERSION.language.

A Goodchild 10 Jun 2003

1.4.4 CR-000007. Add RELATED_PARTY class to GENERIC package.
CR-000017. Renamed VERSION.parent_version_id to
preceding_version_id.

S Heard,
D Kalra

11 Apr 2003
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 3 of 45 Date of Issue: 09 Mar 2004

© 2003,2004 The openEHR Foundation

The openEHR Common Information Model
Rev 1.5
Acknowledgements
The work reported in this paper has been funded in by a number of organisations, including The Uni-
versity College, London; The Cooperative Research Centres Program through the Department of the

1.4.3 Major alterations due to CR-000003, CR-000004. ARCHE-

TYPED class no longer inherits from LOCATABLE, now related
by association. Redesign of Change Control package. Docu-
ment structure improved. (Formally validated)

T Beale,
Z Tun

18 Mar 2003

1.4.2 Moved External package to Support RM. Corrected CONTRIBU-

TION.description to DV_TEXT. Made PARTICIPATION.time
optional. (Formally validated).

T Beale 25 Feb 2003

1.4.1 Formally validated using ISE Eiffel 5.2. Corrected types of
VERSIONABLE.language, charset, territory. Added ARCHE-

TYPED.uid:OBJECT_ID. Renamed ARCHETYPE_ID.rm_source to
rm_originator, and rm_level to rm_concept; added
archetype_originator. Rewrote archetype id section. Changed
PARTICIPATION.mode to COORDINATED_TERM & fixed invari-
ant.

T Beale,
D Kalra

18 Feb 2003

1.4 Changes post CEN WG meeting Rome Feb 2003. Changed
ARCHETYPED.meaning from STRING to DV_TEXT. Added CON-

TRIBUTION.name invariant. Removed AUTHORED_VA and
ACQUIRED_VA audit types, moved feeder audit to the EHR RM.
VERSIONABLE.code_set renamed to charset. Fixed pre/post
condition of OBJECT_ID.context_id, added
OBJECT_ID.has_context_id. Changed TERMINOLOGY_ID string
syntax.

T Beale,
D Kalra,
D Lloyd

8 Feb 2003

1.3.5 Removed segment from archetype_id; corrected inconsisten-
cies in diagrams and class texts.

Z Tun,
T Beale

3 Jan 2003

1.3.4 Removed inheritance from VERSIONABLE to ARCHETYPED. T Beale 3 Jan 2003

1.3.3 Minor corrections: OBJECT_ID; changed syntax of
TERMINOLOGY_ID. Corrected Fig 6.

T Beale 17 Nov 2002

1.3.2 Added Generic Package; added PARTICIPATION and changed
and moved ATTESTATION class.

T Beale 8 Nov 2002

1.3.1 Removed EXTERNAL_ID.iso_oid. Remodelled EXTERNAL_ID

into new classes - OBJECT_REF and OBJECT_ID. Remodelled all
change control classes.

T Beale,
D Lloyd,

M Darlison,
A Goodchild

22 Oct 2002

1.3 Moved ARCHETYPE_ID.iso_oid to EXTERNAL_ID. DV_LINK no
longer a data type; renamed to LINK.

T Beale 22 Oct 2002

1.2 Removed Structure package to own document. Improved CM
diagrams.

T Beale 11 Oct 2002

1.1 Removed HCA_ID. Included Spatial package from EHR RM.
Renamed SPATIAL to STRUCTURE.

T Beale 16 Sep 2002

1.0 Taken from EHR RM. T Beale 26 Aug 2002

Issue Details Who Completed
Date of Issue: 09 Mar 2004 Page 4 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003,2004 The openEHR Foundation

The openEHR Common Information Model
Rev 1.5
Prime Minister and Cabinet of the Commonwealth Government of Australia; Ocean Informatics,
Australia.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 5 of 45 Date of Issue: 09 Mar 2004

© 2003,2004 The openEHR Foundation

The openEHR Common Information Model
Rev 1.5
Date of Issue: 09 Mar 2004 Page 6 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003,2004 The openEHR Foundation

The openEHR Common Information Model
Rev 1.5
Table of Contents
Copyright Notice ...2
Amendment Record ..3
Acknowledgements ...4
Table of Contents ..7

1 Introduction.. 9
1.1 Purpose...9
1.2 Related Documents ..9
1.3 Status..9
1.4 Peer review ..9

2 Overview ..11

3 RM.COMMON.IDENTIFICATION Package 12
3.1 Requirements ...12
3.2 Overview..13
3.3 Class Descriptions..15
3.3.1 OBJECT_REF Class..15
3.3.2 ACCESS_GROUP_REF Class..15
3.3.3 PARTY_REF Class ..16
3.3.4 OBJECT_ID Class ...16
3.3.5 HIER_OBJECT_ID Class..16
3.3.5.1 Syntax ..17
3.3.6 ARCHETYPE_ID Class ..17
3.3.6.1 Archetype ID Syntax ...18
3.3.7 TERMINOLOGY_ID Class ..19
3.3.7.1 Identifier Syntax ..19
3.3.8 UID Class...20
3.3.9 ISO_OID Class ..20
3.3.10 UUID Class..21

4 RM.COMMON.ARCHETYPED Package 22
4.1 Overview..22
4.1.1 The Root Class LOCATABLE...22
4.1.2 Feeder Systems ..23
4.2 Class Descriptions..23
4.2.1 Class LOCATABLE...23
4.2.2 ARCHETYPED Class ...25
4.2.3 LINK Class ..26
4.2.4 FEEDER_AUDIT Class ..27

5 RM.COMMON.GENERIC Package.................................... 28
5.1 Overview..28
5.2 Participation ...28
5.3 Attestation..28
5.3.1 Related Parties ...29
5.4 Class Descriptions..29
5.4.1 PARTICIPATION Class ...29
5.4.2 ATTESTATION Class..30
5.4.3 RELATED_PARTY Class..30
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 7 of 45 Date of Issue: 09 Mar 2004

© 2003,2004 The openEHR Foundation

The openEHR Common Information Model
Rev 1.5
6 RM.COMMON.CHANGE_CONTROL Package 32
6.1 Overview ... 32
6.2 The Configuration Management Paradigm ... 32
6.2.1 Organisation of the Repository.. 32
6.2.2 Change Management ... 32
6.2.3 Changes in Time.. 33
6.2.4 General Model of a Change-controlled Repository....................... 34
6.3 Formal Model .. 35
6.3.1 Versioned Items ... 35
6.3.2 Version Lifecycle... 36
6.3.3 Attestation of Versions .. 37
6.4 Class Descriptions ... 38
6.4.1 VERSION_REPOSITORY Class.. 38
6.4.2 AUDIT_DETAILS Class... 39
6.4.3 VERSION Class .. 39
6.4.4 VERSION_AUDIT Class.. 40
6.4.5 CONTRIBUTION Class ... 41
6.5 Transaction Semantics of Contributions.. 41

A References ... 43
A.1 General ..43
A.2 European Projects.. 43
A.3 CEN ... 43
A.4 OMG..43
A.5 Software Engineering .. 44
A.6 Resources... 44
Date of Issue: 09 Mar 2004 Page 8 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003,2004 The openEHR Foundation

The openEHR Common Information Model Introduction
Rev 1.5
1 Introduction

1.1 Purpose
This document describes the architecture of the openEHR Common Reference Model, which contains
concepts used by other openEHR reference models.

The intended audience includes:

• Standards bodies producing health informatics standards;

• Software development groups using openEHR;

• Academic groups using openEHR;

• The open source healthcare community;

• Medical informaticians and clinicians intersted in health information;

• Health data managers.

1.2 Related Documents
Prerequisite documents for reading this document include:

• The openEHR Modelling Guide

• The openEHR Support Reference Model

• The openEHR Data Types Reference Model

1.3 Status
This document is under development, and will be published as a proposal for input to standards proc-
esses and implementation works.

Currently the UML diagrams are hand-produced. None of the existing tools (e.g. Rose, Objecteering),
includes sufficient support of UML or has good enough visual quality to use here. However, UML
tools are constantly under investigation, and this situation may change in the future.

The latest version of this document can be found in PDF and HTML formats at
http://www.openEHR.org/Doc_html/Model/Reference/common_rm.htm. New versions
are announced on openehr-announce@openehr.org.

1.4 Peer review
Areas where more analysis or explanation is required are indicated with “to be continued” paragraphs
like the following:

To Be Continued: more work required

Reviewers are encouraged to comment on and/or advise on these paragraphs as well as the main con-
tent. Please send requests for information to info@openEHR.org. Feedback should preferably be
discussed on one of the appropriate mailing lists, openehr-technical@openehr.org or
openehr-clinical@openehr.org.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 9 of 45 Date of Issue: 09 Mar 2004

© 2003,2004 The openEHR Foundation

http://www.openEHR.org/Doc_html/Model/Reference/common_rm.htm
mailto:openehr-technical@openehr.org
mailto:openehr-announce@openehr.org
mailto:info@gehr.org
mailto:openehr-technical@openehr.org
mailto:openehr-clinical@openehr.org

Introduction The openEHR Common Information Model
Rev 1.5
Date of Issue: 09 Mar 2004 Page 10 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003,2004 The openEHR Foundation

The openEHR Common Information Model Overview
Rev 1.5
2 Overview

The Common Reference Model comprises a number of packages containing concepts used in higher
level openEHR models. It is illustrated in FIGURE 1.

The Identification package defines the semantics of all identifiers used in the openEHR models,
including references to objects, identifiers of objects, and a representation of identifiers like the ISO
OID and Microsoft Guid/ DCE UUID.

The Archetyped package described here is informed by a number of design principles, centred on the
concept of “two-level” modelling. These principles are described in detail [1], and discussed with
respect to the EHR [2].

The Generic package contains classes representing concepts which are generic across the domain.

The Change Control package defines the generalised semantics of changes to a repository, such as an
EHR, over time. Each item in such a repository is version controlled to allow the repository as a
whole to be properly versioned in time. The semantics described are in response to medico-legal
requirements defined in GEHR [9], and in the ISO Technical Specification 18308 [4]. Both of these
requirements specifications mention specifically the version control of the health record.

FIGURE 1 RM.COMMON Package Structure

GENERICARCHETYPED

COMMON

CHANGE_CONTROLIDENTIFICATION
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 11 of 45 Date of Issue: 09 Mar 2004

© 2003,2004 The openEHR Foundation

RM.COMMON.IDENTIFICATION Package The openEHR Common Information Model
Rev 1.5
3 RM.COMMON.IDENTIFICATION Package

3.1 Requirements
Identification of entities both in the real world and in information systems is a non-trivial problem.
The scenarios for identification across systems in a health information environment include the fol-
lowing:

• real world identifiers such as social security numbers, veterans affairs ids etc can be
recorded as required by health care facilities, enterprise policies, or legislation.

• identifiers for informational entities which represent real world entities or processes should
be unique.

• it should be possible to determine if two identifiers refer to information entities which are
linked to the same real world entity, even if instances of the information entities are main-
tained in different systems;

• versions or changes to real-world entity-linked informational entities (which may create
new information instances) should be accounted for in two ways:

- it should be possible to tell if two identifiers refer to distinct versions of the same
informational entity in the same version tree;

- it should not be possible to confuse same-named versions of informational entities
maintained in multiple systems which purport to represent the same real world
entity. E.g. there is no guarantee that two systems’ “latest” version of the Person
“Dr Jones” is the same.

Medico-legal use of information relies on previous states of information being identifiable
in some way.

• it should be possible for an entity in one system or service (such as the EHR) to refer to an
entity in another system or service in such a way that:

- the target of the reference is easily finable within the shared environment, and
- the reference does is valid regardless of the physical architecture of servers and

applications.

The following subsections describe some of the features and challenges of identification.

Identification of Real World Entities (RWEs)
Real world entities such as people, car engines, invoices, and appointments all have identifiers.
Although many of these are designed to be unique within a jurisdiction, they are often not, due to data
entry errors, bad design (ids which are too small or incorporate some non-unique characteristic of the
identified entities), bad process (e.g. non-synchronised id issuing points); identity theft (e.g. via theft
of documents of proof or hacking). In general, while some real world identifiers (RWIs) are “nearly
unique”, none can be guaranteed so.

Examples of RWE identifiers which are intended to be unique over large jurisdictions include:

• driver’s licence id

• social security number

• passport number

The defining characteristic of many RWE ids appears to be that they continue to identify the entities
in question, regardless of how they changes in time; for example a social security number does not
Date of Issue: 09 Mar 2004 Page 12 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003,2004 The openEHR Foundation

The openEHR Common Information Model RM.COMMON.IDENTIFICATION Package
Rev 1.5
change when someone changes their hair colour or even their gender. There may be a general princi-
ple whereby any RWE id in fact doesn’t identify an individual entity so much as its passage in time
and space.

In general it should be the case that if two RWE ids are equal, they refer to the same RWE.

Identification of Informational Entities (IEs)
As soon as information systems are used to record facts about RWEs, the situation becomes more
complex because of the intangible nature of information. In particular:

• the same RWE can be represented simultaneously on more than one system (“spatial multi-
plicity”);

• the same RWE may be represented by more than one “version” of the same IE in a system
(“temporal multiplicity”).

At first sight, it appears that there can also be purely informational entities, i.e. IEs which do not refer
to any RWE, such as books, online-only documents and software. However, as soon as one considers
an example it becomes clear that there is always a notional “definitive” or “authoritative” (i.e. trusted)
version of every such entity. These entities can better be understood as “virtual RWEs”. Thus it can
still be said that multiple IEs may refer to any given RWE.

The underlying reason for the multiplicity of IEs is that “reality” - time and space - in computer sys-
tems is not continuous but discrete, and each “entity” is in fact just a snapshot of certain attribute val-
ues of a RWE.

If identifiers are assigned to IEs without regard to versions or duplicates, then no assertion can be
made about the identified RWE when two IE ids are compared.

Referencing of Informational Entities
Within a distributed information environment, there is a need for entities not connected by direct ref-
erences in the same memory space to be able to refer to each other. There are two competing require-
ments:

• that the separation of objects in a distributed computing environment not compromise the
semantics of the model. At the limit, this mandates the use of proxy types which have the
same abstract interface as the proxied type; i.e. the “static” approach of Corba.

• that different types of information can be managed relatively independently; for example
EHR and demographic information can be managed by different groups in an organisation
or community, each with at least some freedom to change implementation and model
details.

3.2 Overview
The External package describes a model of references and identifiers for information entities only and
is illustrated in FIGURE 2.

The class OBJECT_ID is an abstract model of identifiers of IEs. It is assumed a priori that there can in
general be more than one IE referring to the same underlying real world entity (RWE), such as a per-
son or invoice; this is due to the possible existence of multiple copies, and also multiple versions. An
OBJECT_ID therefore explicitly includes an optional version_id attribute. The rule for versioning is
that if any attribute value of the IE changes, the version attribute value should be updated, e.g. by
incrementing a simple integer. The version_id attribute should be used for object identifiers whose
targets change, such as demographic entities; it can usually be omitted for ids of things like terminol-
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 13 of 45 Date of Issue: 09 Mar 2004

© 2003,2004 The openEHR Foundation

RM.COMMON.IDENTIFICATION Package The openEHR Common Information Model
Rev 1.5
ogy codes, where the terminology obeys the rule that a given code never changes its meaning through
all versions of the terminology (i.e. ICD10 code F40.0 will mean “Agoraphobia” for all time (in Eng-
lish)).

The subtype HIER_OBJECT_ID defines a hierarchical identifier model, along the lines of ISO Oids; it
therefore includes the attributes context_id and local_id, to make up a complete, unique identifier.
The context_id is optional, since it is possible for local_id values to exist in a single global name-
space. When a HIER_OBJECT_ID has a context_id, it is of type UID, meaning it has the properties of
a timeless unique object identifier. Subtypes of UID include the ISO_OID and DCE UUID types.

The other subtypes, ARCHETYPE_ID and TERMINOLOGY_ID define different kinds of identifier, the
former being a multi-axial identifier for archetypes, and the latter being a globally unique single
string identifier for terminologies.

All OBJECT_IDs are used as identifier attributes within the thing they identify. To refer to an identi-
fied object, an instance of the class OBJECT_REF is required. OBJECT_REF is provided as a means of
distributed referencing, and includes the object namespace (typically 1:1 with some service, such as
“terminology”) and type. The general principle of object references is to be able to refer to an object
available in a particular namespace or service. Usually they are used to refer to objects in other serv-
ices, such as a demographic entity from within an EHR, but they may be used to refer to local objects
as well. The type may be the concrete type of the referred-to object (e.g. “GP”) or any proper ancestor
(e.g. “PARTY”). The notion of object reference provided here is a compromise between the static
binding notion of Corba (where each model is dependent on all the interface details of the classes in
other models) and a purely dynamic referencing scheme, where the holder of a reference cannot even
tell what type of object the reference points to.

FIGURE 2 External Package

OBJECT_REF
namespace[1]: String
type[1]: String

PARTY_REF

EXTERNAL

ARCHETYPE_ID

qualified_rm_entity[1]: String
rm_originator[1]: String
rm_name[1]: String
rm_entity[1]: String
domain_concept[1]: String
specialisation[0..1]: String

ACCESS_
GROUP_REF

ISO_OID

id

1

TERMINOLOGY_ID

name: String

OBJECT_ID
value[1]: String

version_id[0..1]: String

UUID

UID

HIER_OBJECT_ID

context_id[0..1]: UID
local_id[1]: String
has_context_id[1]: Boolean
Date of Issue: 09 Mar 2004 Page 14 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003,2004 The openEHR Foundation

The openEHR Common Information Model RM.COMMON.IDENTIFICATION Package
Rev 1.5
3.3 Class Descriptions

3.3.1 OBJECT_REF Class

3.3.2 ACCESS_GROUP_REF Class

CLASS OBJECT_REF

Purpose

Class describing a reference to another object, which may exist locally or be
maintained outside the current namespace, e.g. in another service. Services are
usually external, e.g. available in a LAN (including on the same host) or the inter-
net via Corba, SOAP, or some other distributed protocol. However, in small sys-
tems they may be part of the same executable as the data containing the Id.

Attributes Signature Meaning

id: OBJECT_ID Globally unique id of an object, regardless of
where it is stored.

namespace: String Namespace to which this identifier belongs in
the local system context (and possibly in any
other openEHR compliant environment) e.g.
“terminology”, “demographic”. These names
are not yet standardised. Legal values for the
namespace are
“local” | “unknown” | “[a-zA-
Z][a-zA-Z0-9_-:/&+?]*”

type: String Name of the class of object to which this
identifier type refers, e.g. “PARTY”, “PER-
SON”, “GUIDELINE” etc. These class
names are from the relevant reference model.
The type name “ANY” can be used to indi-
cate that any type is accepted (e.g. if the type
is unknown).

Invariant
Id_exists: id /= Void
Namespace_exists: namespace /= Void and then not namespace.empty
Type_exists: type /= Void and then not type.empty

CLASS ACCESS_GROUP_REF

Purpose Reference to access group in an access control service.

Inherit OBJECT_REF

Functions Signature Meaning

Invariant namespace_validity: namespace.is_equal(“access_control”)
type_validity: type.is_equal(“ACCESS_GROUP”)
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 15 of 45 Date of Issue: 09 Mar 2004

© 2003,2004 The openEHR Foundation

RM.COMMON.IDENTIFICATION Package The openEHR Common Information Model
Rev 1.5
3.3.3 PARTY_REF Class

3.3.4 OBJECT_ID Class

3.3.5 HIER_OBJECT_ID Class

CLASS PARTY_REF

Purpose Identifier for parties in a demographic service. There are typically a number of
subtypes of the PARTY class, including PERSON, ORGANISATION, etc.

Inherit OBJECT_REF

Functions Signature Meaning

Invariant namespace_validity: namespace.is_equal(“demographic”)

CLASS OBJECT_ID (abstract)

Purpose
Ancestor class of identifiers of informational objects. Ids may be completely
meaningless, in which case their only job is to refer to something, or may carry
some information to do with the identified object.

Use Object_ids are used inside an object to identify that object. To identify another
object, use an Object_ref.

Attributes Signature Meaning

value: String The value of the id in the form defined below.

Functions Signature Meaning

version_id: String
ensure
Result /= Void implies not
Result.is_empty

Version of information pointed to by this ID,
if versioning is supported.

Invariant Value_exists: value /= Void and then not value.empty

CLASS HIER_OBJECT_ID

Purpose Hierarchical identifiers.

HL7 The HL7v3 II Data type.

Functions Signature Meaning

context_id: UID The identifier of the conceptual namespace in
which the object exists, within the identifica-
tion scheme. May be Void.
Date of Issue: 09 Mar 2004 Page 16 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003,2004 The openEHR Foundation

The openEHR Common Information Model RM.COMMON.IDENTIFICATION Package
Rev 1.5
3.3.5.1 Syntax
The syntax of the value attribute by default follows the following pattern:

[context_id “.”] local_id [“(” version_id “)”]

The syntax may be redefined in subtypes.

3.3.6 ARCHETYPE_ID Class

has_context_id: Boolean True if there is at least one “.” in identifier
before version part.

local_id: String
ensure
Result /= Void and then not
Result.empty

The local identifier of the object within the
context.

Invariant

CLASS ARCHETYPE_ID

Purpose Identifier for archetypes.

Inherit OBJECT_ID

Functions Signature Meaning

qualified_rm_entity: String Globally qualified reference model entity,
e.g. “openehr-ehr_rm-entry”.

domain_concept: String Name of the concept represented by this
archetype, including specialisation, e.g.
“biochemistry result-choles-
terol”.

rm_originator: String
ensure
Result /= Void and then not
Result.is_empty

Organisation originating the reference model
on which this archetype is based, e.g.
“openehr”, “cen”, “hl7”.

rm_name: String
ensure
Result /= Void and then not
Result.is_empty

Name of the reference model, e.g. “rim”,
“ehr_rm”, “en13606”.

rm_entity: String
ensure
Result /= Void and then not
Result.is_empty

Name of the ontological level within the ref-
erence model to which this archetype is tar-
geted, e.g. for openEHR, “folder”,
“composition”, “section”, “entry”.

CLASS HIER_OBJECT_ID
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 17 of 45 Date of Issue: 09 Mar 2004

© 2003,2004 The openEHR Foundation

RM.COMMON.IDENTIFICATION Package The openEHR Common Information Model
Rev 1.5
3.3.6.1 Archetype ID Syntax
Archetype ids obey the general pattern of object ids. They are defined in a single global namespace,
hence the context_id attribute is always empty. The remaining part of the id is “multi-axial”, meaning
that each identifier instance denotes a single archetype within a multi-dimensional space. In this case,
the space is essentially a versioned 3-dimensional space, with the dimensions being:

• reference model entity, i.e. target of archetype

• domain concept

• version

As with any multi-axial identifier, the underlying principle of an archetype id is that all parts of the id
must be able to be considered immutable. This means that no variable characteristic of an archetype
(e.g. accrediting authority, which might change due to later accreditation by another authority, or may
be multiple) can be included in its identifier. The syntax of an ARCHETYPE_ID is as follows:

archetype_id: qualified_rm_entity ‘.’ domain_concept ‘.’ version_id

qualified_rm_entity: rm_originator ‘-’ rm_name ‘-’ rm_entity
rm_originator: NAME
rm_name: NAME
rm_entity: NAME

domain_concept: concept_name { ‘-’ specialisation }*
concept_name: NAME
specialisation: NAME

version_id: ‘v’ NUMBER

NUMBER: [0-9]*
NAME: [a-z][a-z0-9()/%$#&]*

The field meanings are as follows:

rm_originator: id of organisation originating the reference model on which this archetype is
based;

rm_name: id of the reference model on which the archetype is based;

rm_entity: ontological level in the reference model;

specialisation: String
ensure
Result /= Void implies not
Result.is_empty

Name of specialisation of concept, if this
archetype is a specialisation of another arche-
type, e.g. “cholesterol”.

local_id: String
ensure then
Result.is_equal(value)

Invariant

Qualified_rm_entity_valid: qualified_rm_entity /= Void and then not
qualified_rm_entity.is_empty
Domain_concept_valid: domain_concept /= Void and then not
domain_concept.is_empty

CLASS ARCHETYPE_ID
Date of Issue: 09 Mar 2004 Page 18 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003,2004 The openEHR Foundation

The openEHR Common Information Model RM.COMMON.IDENTIFICATION Package
Rev 1.5
domain_concept: the domain concept name, including any specialisations;

version_id: numeric version identifier;

Examples of archetype identifiers include:

• openehr-ehr_rm-section.physical_examination.v2

• openehr-ehr_rm-section.physical_examination-prenatal.v1

• hl7-rim-act.progress_note.v1

• openehr-ehr_rm-entry.progress_note-naturopathy.v2

Archetypes can also be identified by other means, such as ISO oids.

3.3.7 TERMINOLOGY_ID Class

3.3.7.1 Identifier Syntax
The syntax of the value attribute is as follows:

name [“(” version “)”]

Examples of terminology identifiers include:

• “snomed-ct”

• “ICD9(1999)”

Versions should only be needed for those terminologies which break the rule that the thing being
identified with a code loses or changes its meaning over versions of the terminology. This should not

CLASS TERMINOLOGY_ID

Purpose

Identifier for terminologies such accessed via a terminology query service. In this
class, the value attribute identifies the Terminology in the terminology service,
e.g. “SNOMED-CT”. A terminology is assumed to be in a particular language,
which must be explicitly specified.

The value if the id attribute is the precise terminology id identifier, including
actual release (i.e. actual “version”), local modifications etc; e.g. “ICPC2”

Inherit OBJECT_ID

Functions Signature Meaning

name: String
ensure
Result /= Void and then not
Result.empty

Return the terminology id (which includes the
“version” in some cases). Distinct names corre-
spond to distinct (i.e. non-compatible) terminol-
ogies. Thus the names “ICD10AM” and
“ICD10” refer to distinct terminologies.

as_string: String
ensure
Result = key

as_canonical_string:String Result =
“<key>” + value + “</key>”

Invariants
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 19 of 45 Date of Issue: 09 Mar 2004

© 2003,2004 The openEHR Foundation

RM.COMMON.IDENTIFICATION Package The openEHR Common Information Model
Rev 1.5
be the case for well known modern terminologies and ontologies, particularly those designed since
the publication of Cimino’s ‘desiderata’ [3] of which the principle of “concept permanance” is appli-
cable here - “A concept's meaning cannot change and it cannot be deleted from the vocabulary”.
However, there maybe older terminologies, or specialised terminologies which may not have obeyed
these rules, but which are still used; version ids should always be used for these.

3.3.8 UID Class

3.3.9 ISO_OID Class

CLASS UID (abstract)

Purpose
Anstract parent of classes representing unique identifiers which identify informa-
tion entities in a durable way. UIDs only ever identify one IE in time or space and
are never re-used.

HL7 The HL7v3 UID Data type.

Attributes Signature Meaning

value: String The value of the id.

Invariant Value_exists: value /= Void and then not value.empty

CLASS ISO_OID

Purpose

Model of ISO’s Object Identifier (oid) as defined by the standard ISO/IEC 8824 .
Oids are formed from integers separated by dots. Each non-leaf node in an Oid
starting from the left corresponds to an assigning authority, and identifies that
authority’s namespace, inside which the remaining part of the identifier is locally
unique.

HL7 The HL7v3 OID Data type.

Inherit UID

Functions Signature Meaning

Invariant
Date of Issue: 09 Mar 2004 Page 20 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003,2004 The openEHR Foundation

The openEHR Common Information Model RM.COMMON.IDENTIFICATION Package
Rev 1.5
3.3.10 UUID Class

CLASS UUID

Purpose

Model of the DCE Universal Unique Identifier or UUID which takes the form of
hexadecimal integers separated by hyphens, following the pattern 8-4-4-4-12 as
defined by the Open Group, CDE 1.1 Remote Procedure Call specification,
Appendix A.

HL7 The HL7v3 UUID Data type.

Inherit UID

Functions Signature Meaning

Invariant
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 21 of 45 Date of Issue: 09 Mar 2004

© 2003,2004 The openEHR Foundation

RM.COMMON.ARCHETYPED Package The openEHR Common Information Model
Rev 1.5
4 RM.COMMON.ARCHETYPED Package

4.1 Overview
The Archetype package includes the core types LOCATABLE, ARCHETYPED, and LINK. It is illustrated
in FIGURE 3.

4.1.1 The Root Class LOCATABLE
Every structural element in the EHR model inherits from the LOCATABLE class, ensuring it has both a
runtime name, and a meaning. The meaning is the standardised, coded semantic name for a node,
while the name attribute carries the runtime name. The name and meaning values are often the same,
but can be different, for example in the “problem/SOAP” sections, where the name of an section at
the problem level might be “diabetes”, but its meaning (derived from its generating archetype) will be
“problem”. The default value for names should be assumed to be the value for meaning, unless
explicitly set otherwise. LOCATABLE also provides the attribute archetype_details, which is non-Void
for archetype root points in data.

LOCATABLE objects may also have a uid, typically implemented using an ISO Oid. In a given data
composition, only those nodes which correspond to archetype root points should have a uid, since
reliable paths can be generated to any point within the tree from a given root point. Thus, root points
which might contain uids would normally be Compositions, Sections which are the root of a Section
tree, and Entry objects; they could be finer grained nodes inside Entries if finer grained archetypes are
used.

Currently the model does not formally mandate uids to be used, or to be used on any particular kind of
node, despite the statements above, because there is not enough documented experience with using
Oids for data node identification (particularly the computational costs of dereferencing, and the stor-
age costs in otherwise ‘small’ data). More experience with real openEHR deployments is required
before the correct formal semantics can be specified.

FIGURE 3 RM.COMMON.ARCHETYPED Package

LOCATABLE
name[1]: DV_TEXT
meaning[1]: DV_TEXT
uid[0..1]: OBJECT_ID
item_at_path (a_name: String):
LOCATABLE
valid_path (a_name: String):
Boolean
concept: DV_TEXT

ARCHETYPED
archetype_id[1]: ARCHETYPE_ID
rm_version[1]: String
access_control[0..1]:
ACCESS_GROUP_REF

ARCHETYPED

* {set}

links

LINK
meaning[1]: DV_TEXT
type[1]: DV_TEXT
target[1]: DV_EHR_URI

0..1

archetype
_details

0..1

feeder_audit

FEEDER_AUDIT
system_id[1]: String
committer[0..1]: String
time_committed[0..1]:
DV_DATE_TIME
change_type[0..1]:
DV_CODED_TEXT
description[0..1]: DV_TEXT
Date of Issue: 09 Mar 2004 Page 22 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003,2004 The openEHR Foundation

The openEHR Common Information Model RM.COMMON.ARCHETYPED Package
Rev 1.5
4.1.2 Feeder Systems
The data in any part of the EHR may be obtained from a feeder system, i.e. a source system which
does not obey any of the EHR semantics defined by openEHR. In particular, there is no guarantee that
the granularity of information recorded in the feeder system obeys the rules of Entries, Compositions,
etc. As a consquence, feeder information might correspond to any level of information defined in the
openEHR models. In order to be able to record feeder audit information correctly, the model has to be
able to associate an audit trail with any granularity of object. For this reason, feeder audit information
is attached to the LOCATABLE class via the feeder_audit attribute, even though it is preferable by
design to have it attached to the equivalent of Compositions or at least the equivalent of archetype
entities (i.e. Compositions, Section trees and Entries). Its usual usage is to attach it to the outermost
object to which it applies. In other words, in most cases, during a legacy data conversion process, the
entirety of a Composition needs only one FEEDER_AUDIT to document its origins. In exceptional
cases, where feeder data comes in in near real time, e.g. from an ICU database, separate
FEEDER_AUDIT objects may need to be generated for parts of a Composition; each commit in this sit-
uation will create a stack of versions of one Composition, with a growing number of FEEDER_AUDIT
objects attached to internal data nodes, each documenting the last import of data.

The feeder audit information is included as part of the data of the Composition, rather than part of the
audit trail of version committal, because it remains revelant throughout the versioning of a logical
Composition, i.e. when a new version is created, the feeder information is retained as part of the cur-
rent version to be seen and possibly modified, just as for the rest of its content. If the main part of the
content is modified so drastically as to make the feeder audit irrelevant, it too can be removed.

A second consequence of feeder and legacy systems is that structural data items may need to be syn-
thesised in order to create valid structures, even though the source system does not have them. For
example, a system may have the equivalent data of Entries, but no Sections or other higher-level data
items; these have to be synthesised during conversion. To indicate synthesis of a data node, a
FEEDER_AUDIT instance is attached to the LOCATABLE in question, and its change_type set to “syn-
thesised”.

4.2 Class Descriptions

4.2.1 Class LOCATABLE

CLASS LOCATABLE (abstract)

Purpose Root structural class of all information models.

GEHR Name attribute in ARCHETYPED, meaning attribute in G1_PLAIN_TEXT.

Synapses

Each record component includes a Synapses Object ID attribute to reference the
Synapses Object (archetype) used as the basis for its construction. All record
components include a name attribute intended for the same purpose as the
openEHR equivalent.

Attributes Signature Meaning

uid: OBJECT_ID Optional globally unique object identifier for
root object of archetyped data structure.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 23 of 45 Date of Issue: 09 Mar 2004

© 2003,2004 The openEHR Foundation

RM.COMMON.ARCHETYPED Package The openEHR Common Information Model
Rev 1.5
meaning: DV_TEXT Design-time name of this fragment taken
from its generating archetype; used to build
archetype paths. This value is therefore a
"standardised" name for this EHR concept,
taken from and mapping back to the arche-
type template according to which this
instance has been constructed.

name: DV_TEXT Runtime name of this fragment, used to
build runtime paths. This is the term pro-
vided via a clinical application or batch
process to name this EHR construct: its
retention in the EHR faithfully preserves the
original label by which this entry was known
to end users.

archetype_details: ARCHETYPED Details of archetyping used on this node.

feeder_audit: FEEDER_AUDIT Audit trail from non-openEHR system of
original commit of information forming the
content of this node, or from a conversion
gateway which has synthesised this node.

links: Set <LINK> Links to other archetyped structures (data
whose root object inherits from ARCHE-
TYPED, such as ENTRY, SECTION and so on).
Links may be to structures in other composi-
tions.

Functions Signature Meaning

is_archetype_root: Boolean True if this node is the root of an archetyped
structure.

path_of_item (a_loc: LOCATA-
BLE): String

The path to an item relative to the root of this
archetyped structure.

item_at_path (a_path: String):
LOCATABLE

The item at a path (relative to this item).

valid_path (a_path: String):
Boolean

True if the path is valid with respect to the
current item.

concept: DV_TEXT
require
is_archetype_root

Clinical concept of the archetype as a whole
(= derived from the ‘meaning’ of the root
node)

CLASS LOCATABLE (abstract)
Date of Issue: 09 Mar 2004 Page 24 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003,2004 The openEHR Foundation

The openEHR Common Information Model RM.COMMON.ARCHETYPED Package
Rev 1.5
4.2.2 ARCHETYPED Class

Invariant

Meaning_valid: meaning /= Void
Name_exists: name /= Void
Links_valid: links /= Void implies not links.empty
Archetyped_validity: is_archetype_root xor archetype_details = Void

CLASS ARCHETYPED

Purpose

Archetypes act as the configuration basis for the particular structures of instances
defined by the reference model. To enable archetypes to be used to create valid
data, key classes in the reference model act as “root” points for archetyping;
accordingly, these classes have the archetype_details attribute set. An instance of
the class ARCHETYPED contains the relevant archetype identification information,
allowing generating archetypes to be matched up with data instances

GEHR G1_ARCHETYPED

Synapses/
SynEx

The SynEx approach does not distinguish between multiple layers of archetypes;
hence an ‘archetype’ covers all information in an entire composition. Conse-
quently, there is only one place where archetype identifiers in the openEHR sense
are used (at the top); all other archetype identifiers are equivalent to the meaning
attribute from LOCATABLE.

The Synapses ObjectID attribute provides a unique reference to each fine-grained
element of an archetype, and is therefore also functionally equivalent to the
archetype_id attribute at the root points in an openEHR structure.

CEN

The 1999 pre-standard does not include any equivalent to the archetype concept.
However each architectural component must include a reference to an entry in the
relevant normative table in the Domain Termlist pre-standard (part 2), to provide
a high-level semantic classification of the component. All Architectural compo-
nents include a component name structure to specify its label: the source of possi-
ble values for such a label was not clearly defined. The 2003 revision of ENV
13606 explicitly includes archetype identification attributes in the class
RECORD_COMPONENT.

Attributes Signature Meaning

archetype_id: ARCHETYPE_ID Globally unique archetype identifier.

access_control:
ACCESS_GROUP_REF

The access control settings of this compo-
nent.

rm_version: String Version of the openEHR reference model
used to create this object.

Invariant archetype_id_exists: archetype_id /= Void
rm_version_exists: rm_version /= Void and then not rm_version.empty

CLASS LOCATABLE (abstract)
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 25 of 45 Date of Issue: 09 Mar 2004

© 2003,2004 The openEHR Foundation

RM.COMMON.ARCHETYPED Package The openEHR Common Information Model
Rev 1.5
4.2.3 LINK Class

CLASS LINK

Purpose

The LINK type defines a logical relationship between two items, such as two
ENTRYs or an ENTRY and a COMPOSITION. Links can be used across composi-
tions, and across EHRs. Links can potentially be used between interior (i.e. non
archetype root) nodes, although this probably should be prevented in archetypes.
Multiple LINKs can be attached to the root object of any archetyped structure to
give the effect of a 1->N link

Use

1:1 and 1:N relationships between archetyped content elements (e.g. ENTRYs)
can be expressed by using one, or more than one, respectively, DV_LINKs.
Chains of links can be used to see “problem threads” or other logical groupings of
items.

MisUse

Links should be between archetyped objects only, i.e. between objects represent-
ing complete domain concepts because relationships between sub-elements of
whole concepts are not necessarily meaningful, and may be downright confusing.
Sensible links only exist between whole ENTRYs, SECTIONs, COMPOSITIONs
and so on.

CEN
The Link Item class is a simplified form of the Synapses Link Item, permitting
links to be established but with limited labelling and no representation for impor-
tance.

Synapses

The Link Item class provides the means to link any arbitrary parts of a single
EHR, for the overall linkage network to be labelled and revised, and for each
direct link to be labelled explicitly. An importance attribute provides guidance on
how links should be handled if only part of a linkage network is requested by a
client process.

GEHR n/a

HL7 The ACT_RELATIONSHIP class in some cases appears to correspond to LINK.

Attributes Signature Meaning

meaning: DV_TEXT Used to describe the relationship, usually in
clinical terms, such as “in response to” (the
relationship between test results and an order),
“follow-up to” and so on. Such relationships
can represent any clinically meaningful connec-
tion between pieces of information.

Value for meaning include those described in
Annex C, ENV 13606 pt 2 [11] under the cate-
gories of “generic”, “documenting and report-
ing”, “organisational”, “clinical”,
“circumstancial”, and “view management”.
Date of Issue: 09 Mar 2004 Page 26 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003,2004 The openEHR Foundation

The openEHR Common Information Model RM.COMMON.ARCHETYPED Package
Rev 1.5
4.2.4 FEEDER_AUDIT Class

type: DV_TEXT The type attribute is used to indicate a clinical
or domain-level meaning for the kind of link,
for example “problem” or “issue”. If type val-
ues are designed appropriately, they can be used
by the requestor of EHR extracts to categorise
links which must be followed and which can be
broken when the extract is created.

target: DV_EHR_URI the logical “to” object in the link relation, as per
the linguistic sense of the meaning attribute.

Functions Signature Meaning

Invariant
meaning_exists: meaning /= Void
type_exists: type /= Void
target_exists: target /= Void

CLASS FEEDER_AUDIT

Purpose Audit details for a feeder system.

Attributes Signature Meaning

system_id: String Identity of the system where the item was
originally committed.

committer: String Identity of party who committed the item.

time_committed:
DV_DATE_TIME

Time of committal of the item.

change_type:
DV_CODED_TEXT

Type of change, e.g. creation, correction,
modification, synthesis etc. Coded using the
openEHR Terminology “audit change type”
group.

description: DV_TEXT Description of change from original system.

Invariants

System_id_exists: system_id /= Void and then not system_id.empty
Committer_valid: committer /= Void implies not committer.empty
Change_type_valid: change_type /= Void and then terminol-
ogy(“openehr”).codes_for_group_name(“audit change type”,
“en”).has(change_type.defining_code)

CLASS LINK
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 27 of 45 Date of Issue: 09 Mar 2004

© 2003,2004 The openEHR Foundation

RM.COMMON.GENERIC Package The openEHR Common Information Model
Rev 1.5
5 RM.COMMON.GENERIC Package

5.1 Overview
The classes presented in this section are abstractions of concepts which are generic to the domain of
health (and most likely other domains), such as “participation” and “attestation”. Here, “generic”
means that the same model can be used, regardless of where they are contextually used in other mod-
els. The generic cluster is illustrated in FIGURE 4.

5.2 Participation
The concept of Participation is an abstraction of the interaction between some Party and an activity.
In the openEHR reference models, participations are actually modelled in two ways. In situations
where the kinds of participation are known and constant, they are modelled as a named attribute in the
relevant reference model. For example, the committer:PARTY_REF attribute in CONTRIBUTION
(inherited from AUDIT_DETAILS) models a participation in which the function is “committal”.
Where the kind of participation is not known at design time, a generic PARTICIPATION class is used.
This class refers to a Party, and records the function, time interval and mode of the participation. It
can be used in any other reference model as required.

5.3 Attestation
Attestation is another concept which occurs commonly in health information. Here it is modelled as
the combination of a number of participations, the time of attestation, a proof object and the list of
identifiers of the attested items. At a minimum, the proof should be a digital certificate which binds:

• the identity of the parties

• the thing attested to, e.g. a statement like “Do you agree that the composition below is an
accurate representation of the clinical session just completed?”, and potentially a hash or
other compressed, encoded representation of the attested-to content

• the time

• appropriate digital signatures.

Such a certificate may be included in the record, or it may exist in some other place such as a notary
service or similar. The use of the DV_ENCAPSULATED type for the proof attribute allows for either.

FIGURE 4 RM.COMMON.GENERIC Package

PARTICIPATION
function[1]: DV_TEXT
time[0..1]: DV_INTERVAL
<DV_DATE_TIME>
mode[1]: DV_CODED_TEXT

GENERIC

performer1
PARTY_REF

ATTESTATION
time[1]: DV_DATE_TIME
proof[0..1]: DV_ENCAPSULATED
items[1]: Set<DV_EHR_URI>
status[1]: DV_CODED_TEXT

participations

1..*

RELATED_PARTY
relationship[1]: DV_CODED_TEXT

party0..1
Date of Issue: 09 Mar 2004 Page 28 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003,2004 The openEHR Foundation

The openEHR Common Information Model RM.COMMON.GENERIC Package
Rev 1.5
Normally the list of items should be a single Entry or Composition, but there is nothing stopping it
including fine-grained items, even though separate attestation of such items does not appear to be
commensurate with good clinical information design or process.

The status attribute is used to indicate whether the attestation has occurred, or is planned - the latter
may be optional or mandatory. It is coded using the openEHR Terminology group “attestation status”.

5.3.1 Related Parties
The RELATED_PARTY class models the combination of a party reference and a relationship. It is
intended to be used in any situation where the identity of the party may or may not be known, but the
relationship to some other party is required - typically this will be a family relationship.

5.4 Class Descriptions

5.4.1 PARTICIPATION Class

CLASS PARTICIPATION

Purpose Model of a participation of a Party (any Actor or Role) in an activity.

Use
Used to represent any participation of a Party in some activity, which is not
explicitly in the model, e.g. assisting nurse. Can be used to record past or future
participations.

Misuse Should not be used in place of more permanent relationships between demo-
graphic entities.

HL7 RIM Participation class.

Attributes Signature Meaning

performer: PARTY_REF The party participating in the activity.

function: DV_CODED_TEXT The function of the Party in this participation
(note that a given party might participate in
more than one way in a particular activity).
This attribute should be coded, but probably
cannot be limited to the HL7:Participation-
Function vocabulary, since it is too limited
and hospital-oriented.

mode: DV_CODED_TEXT The mode of the performer / activity interac-
tion, e.g. present, by telephone, by email etc.

time: DV_INTERVAL
<DV_DATE_TIME>

The time interval during which the participa-
tion took place, if it is used in an observa-
tional context (i.e. recording facts about the
past); or the intended time interval of the par-
ticipation when used in future contexts, such
as EHR Instructions.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 29 of 45 Date of Issue: 09 Mar 2004

© 2003,2004 The openEHR Foundation

RM.COMMON.GENERIC Package The openEHR Common Information Model
Rev 1.5
5.4.2 ATTESTATION Class

5.4.3 RELATED_PARTY Class

Invariant

Function_exists: function /= Void
Mode_valid: terminology(“openehr”).codes_for_group_name(“participation
modes”, “en”).has(mode)
Performer_exists: performer /= Void

CLASS ATTESTATION

Purpose Record of one or more Parties attesting something.

Attributes Signature Meaning

participations:
List <PARTICIPATION>

Pariticipations in this attestation, e.g. witness,
primary authority etc.

time: DV_DATE_TIME Time at which attestation was made.

proof: DV_ENCAPSULATED Proof of attestation.

items: Set <DV_EHR_URI> Items attested. Although not recommended,
these may include fine-grained items which
have been attested in some other system. Oth-
erwise it is assumed to be for the entire VER-
SION with which it is associated.

status: DV_CODED_TEXT Status of this attestation. Coded by the
openEHR Terminology group “attestation sta-
tus”.

Invariants

Participations_validity: participations /= Void and then not participations.empty
Time_exists: time /= Void
Items_validity: items /= Void and then not items.is_empty
Status_validity: status /= Void and then terminol-
ogy(“openehr”).codes_for_group_name(“attestation status”, “en”).has(sta-
tus.defining_code)

CLASS RELATED_PARTY

Purpose Party and relationship of the party.

Attributes Signature Meaning

party: PARTY_REF Id of Party

CLASS PARTICIPATION
Date of Issue: 09 Mar 2004 Page 30 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003,2004 The openEHR Foundation

The openEHR Common Information Model RM.COMMON.GENERIC Package
Rev 1.5
relationship: DV_CODED_TEXT Relationship of subject of this ENTRY
to the subject of the record. May be
coded. If it is the patient, coded as
“self”.

Invariants
Relationship_valid: relationship /= Void and then terminol-
ogy(“openehr”).codes_for_group_name(“related party relationship”,
“en”).has(relationship.defining_code)

CLASS RELATED_PARTY
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 31 of 45 Date of Issue: 09 Mar 2004

© 2003,2004 The openEHR Foundation

RM.COMMON.CHANGE_CONTROL Package The openEHR Common Information Model
Rev 1.5
6 RM.COMMON.CHANGE_CONTROL Package

6.1 Overview
In various openEHR reference models, the semantics of formal change control are required. There are
two architectural aspects of managing changes to data. The first is the concept of a complex informa-
tion object, being versioned in time, meaning that its creation and all subsequent modifications cause
new “versions” to be created, rather than literally overwriting the existing data. Each version includes
an audit trail, typically containing the identity of a user, the date/time of the change, and a reason for
the change. The second aspect recognises that repositories are made up of complex information
objects, and that changes are not in fact just made to individual objects, but to the respository itself.
Any change by a user may in fact change more than one versioned object in the repository, and the set
of such changes constitutes the logical unit of change to the repository, taking it from one valid state
to the next.

These concepts are well-known, under the title “configuration management”, and are used as the
basis for most software and other change management systems, including numerous products on the
market today.

The following sections describe the configuration management paradigm in more detail, and explain
how it relates to the openEHR reference models, in particular, the model for the EHR.

6.2 The Configuration Management Paradigm
The “configuration management” (CM) paradigm is well-known in software engineering, and has its
own IEEE standards. CM is about managed control of changes to a repository of items (formally
called “configuration items” or CIs), and is relevant to any logical repository of distinct information
items which changes in time. In health information systems, at least two types of information require
such management: electronic health records, and demographic information. In most analyses in the
past, the need for change management has been expressed in terms of specific requirements for audit
trailing of changes, availability of previous states of the repository and so on. Here, we aim to provide
a formal, general-purpose model for change control, and show how it applies to health information.

6.2.1 Organisation of the Repository
The general organisation of a repository of complex information items such as a software repository,
or the EHR consists of the following:

• a number of distinct information items, or configuration items, each of which is uniquely
identified, and may have any amount of internal complexity;

• optionally, a directory system of some kind, in which the configurations items are organised.

Thus, in a software or document repository, the CIs are files arranged in the directories of the file sys-
tem; in an EHR based on the GEHR or CEN models, they are Compositions arranged in a Folder
structure. Contributions are made to the repository by users. This general abstraction is visualised in
FIGURE 5.

6.2.2 Change Management
As implied earlier, change doesn’t occur to CIs in isolation, but to the repository as a whole. Possible
types of change include:

• creation of a new CI;
Date of Issue: 09 Mar 2004 Page 32 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003,2004 The openEHR Foundation

The openEHR Common Information Model RM.COMMON.CHANGE_CONTROL Package
Rev 1.5
• removal of a CI;

• modification of a CI;

• creation of, change to or deletion of part of the directory structure;

• moving of a CI to another location in the directory structure.

The goal of configuration management is to ensure the following:

• the repository is always in a valid state;

• any previous state of the repository can be reconstructed;

• all changes are audit-trailed.

6.2.3 Changes in Time
Properly managing changes to the repository requires two mechanisms. The first, version control, is
used to manage versions of each CI, and of the directory structure if there is one. The second is the
concept of the “change-set”, or what we will call a contribution. This is the set of changes to individ-
ual CIs (and the directory structure) made by a user as part of some logical change. For example, in a
document repository, the logical change might be an update to a document that consists of multiple
files (CIs). There is one contribution, consisting of changes to the document file CIs, to the repository.
In the EHR, a contribution might consist of changes to more than one Composition, and possibly to
the organising Folder structure.

A typical sequence of changes to a repository is illustrated below. FIGURE 6 shows a notional repos-
itory containing a number of CIs in an initial state (note that the directory tree is not shown for the
sake of simplicity).

The repository after four contributions is shown in FIGURE 7 (where each contribution is indicated
by a blue oval). As each contribution is made, the repository is changed in some way. The first brings
into existing a new CI, and modifies three others (changes indicated by the ‘C’ triangles). The second

FIGURE 5 General Structure of a Controlled Repository

CI

CI
CI

CI

CI

CI

CI

CI
CI

Users

Repository

Users

CI

Directory
Structure Configuration

Item

F

F

F

F

contributions contributions
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 33 of 45 Date of Issue: 09 Mar 2004

© 2003,2004 The openEHR Foundation

RM.COMMON.CHANGE_CONTROL Package The openEHR Common Information Model
Rev 1.5
contribution causes the creation of a new CI only. The third causes a creation as well as two changes,
while the fourth causes only a change. (Again, changes to the folder structure are not shown here).

One nuance which should be pointed out is that, in FIGURE 7, contributions are shown as if they are
literally a set of deltas, i.e. exactly the changes which occur to the record. Thus, the first contribution
is the set {CIw, Ca1, Cc1, Cd1} and so on. Whether this is exactly true depends on the construction of
applications. In some situations, some CIs may be updated by the user viewing the current list and
entering just the changes - the situation shown in FIGURE 7; in others, the system may provide the
current state of these CIs for editing by the user, and submit the updated versions, as shown in FIG-
URE 8. Some applications may do both, depending on which CI is being updated. The internal ver-
sioning implementation may or may not generate deltas as a way of efficient storage.

For our purposes here, we consider a contribution as being the logical set of CIs changed or created at
one time, as implied by FIGURE 8.

6.2.4 General Model of a Change-controlled Repository
FIGURE 9 shows an abstract model of a change-controlled repository, which consists of:

• version-controlled configuration items - instances of VERSION_REPOSITORY<T>;

• CONTRIBUTIONs;

• an optional directory system of of folders. If folders are used, the folder structure must also
be versioned as a unit.

The actual type of links between the controlled repository and the other entities might vary - in some
cases it might be composition, in others aggregation; cardinalities might also vary. FIGURE 9 there-

FIGURE 6 Initial State of Repository

CIa CIb CIc CId

CIa

Ca1 Cc1 Cd1

Cd2Cb1

tim
e

FIGURE 7 Contributions to the Repository (delta form)

CIb CIc CId

CIw

CIx

CIy

Cw1

CI creation
existing CIs

delta

Contribution
1

Contribution
2

Contribution
3

Contribution
4

Date of Issue: 09 Mar 2004 Page 34 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003,2004 The openEHR Foundation

The openEHR Common Information Model RM.COMMON.CHANGE_CONTROL Package
Rev 1.5
fore provides a guide to the definition of actual controlled repositories, such as an EHR, rather than a
formal specification for them.

6.3 Formal Model

6.3.1 Versioned Items
FIGURE 10 illustrates a formal model of a version repository. In this model, the class
VERSION_REPOSITORY<T> provides the versioning facilities for one CI, such as an EHR Composi-
tion, or a Party in a demographic system. Each version is an instance of the class VERSION<T>, which
combines the data being versioned, the audit trail, and any attestations applied to the version. Both
VERSION_REPOSITORY<T> and VERSION<T> are generic classes, with the generic parameter type T
being the type of the data; ensuring that all versions in a given VERSION_REPOSITORY are of the
same type, such as ENTRY or FOLDER, and that the repository itself is properly typed. Each
VERSION_REPOSITORY has a unique identifier, its uid attribute, and a reference to the owning object

Ca1 Cc1 Cd1

Cd1Cb1

tim
e

FIGURE 8 Contributions to the Repository (non-delta form)

CIa CIb CIc CId

CIb
’

CIa
’

CId
’’

CIa
’

CIx

CIw

CIy

CIw
’

Cw1

Contribution
1

Contribution
2

Contribution
3

Contribution
4

FIGURE 9 Informal Model of Change-controlled Repository

CONTRIBUTION
contributions

*

VERSION_REPOSITORY<T>

FOLDER

CONTROLLED_
REPOSITORY

directory:

0..1

CIs*

all_CIs1..*

*
folders

T
data

VERSION_REPOSITORY<T>
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 35 of 45 Date of Issue: 09 Mar 2004

© 2003,2004 The openEHR Foundation

RM.COMMON.CHANGE_CONTROL Package The openEHR Common Information Model
Rev 1.5
- the owner_id attribute. The latter helps ensure that in storage systems, versioned objects are always
correctly allocated to their enclosing repository, such as an EHR.

The audit attribute in VERSION<T>, of type VERSION_AUDIT, includes of a set of attributes which
form an audit trail, namely node, committer, time_committed, and reason, and provides a link to the
contribution responsible for the version. It . The first three of these attribute values always have val-
ues identical with the CONTRIBUTION instance for a given contribution, i.e. they are copied in. This
is done to enable sharing of versioned entities independently of which contributions they were part of.

The attestations attribute allows attestations to be associated with the data in the version. Attestations
can be used as required by enterprise processes or legislation, and indicate who and when the item in
question was attested. A digital “proof” is also required, although no assumption is made about the
form of such proof.

6.3.2 Version Lifecycle
Versioned content has a lifecycle state associated with it, modelled using the VERSION.lifecycle_state
attribute. Typically the lifecycle would follow the trajectory “draft” -> “active” -> “inactive”. No par-
ticular state machine is mandated here, although the state attribute is coded from the openEHR Termi-
nology “version lifecycle state” group. Recording the state in VERSION enables two common
scenarios to be faithfully represented.

The first is a user's need to save something in 'draft' state, e.g. because they have run out of time to
finish writing part of the Composition, or due to an emergency. In hospitals this may well be a com-
mon occurrence. Such draft Compositions cannot be saved locally on the client machine, since this

FIGURE 10 RM.COMMON.CHANGE_CONTROL Package

VERSION_REPOSITORY<T>
uid[1]: OBJECT_ID
owner_id[1]: OBJECT_REF
time_created[1]: DV_DATE_TIME
all_version_ids: List <String>
all_versions: List <VERSION<T>>
has_version_at_time (a_dt:
DV_DATE_TIME): Boolean
has_version_with_id (a_ver_id:
String): Boolean
version_with_id (id: String):
VERSION<T>
version_at_time (a_dt:
DV_DATE_TIME): VERSION<T>
latest_version: VERSION<T>
commit (data: T; audit...)

CHANGE_CONTROL

VERSION<T>
version_id[1]: String
preceding_version_id[1]: String
version_repository_id[1]: OBJECT_REF
lifecycle_state[1]: DV_STATE
uid[1]: OBJECT_ID

audit

1

CONTRIBUTION
uid[1]: OBJECT_ID
description[1]: DV_TEXT
commit (versions:
Set<OBJECT_ID>)

1..* versions
uid

uid

AUDIT_DETAILS
node[1]: String
committer[1]: PARTY_REF
time_committed[1]:
DV_DATE_TIME

1 contribution

data 1

T ATTESTATION

attestations0..*

VERSION_AUDIT
change_type[1]:
DV_CODED_TEXT
Date of Issue: 09 Mar 2004 Page 36 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003,2004 The openEHR Foundation

The openEHR Common Information Model RM.COMMON.CHANGE_CONTROL Package
Rev 1.5
represents a security risk (a small client-side database would be much easier to hack into than a secure
server). They must therefore be persisted on the server, either in the actual EHR, or in a 'holding bay'
which was recognised as not being part of the EHR proper. Either way, the author would have to
explicitly retrieve the Composition(s) and after further work or review, 'promote' them into the EHR
as 'active' Compositions; alternatively, they might decide to throw them away.

The second scenario is the need to be able to represent states like 'active', 'inactive' and 'deleted' of
Compositions in a system. (The 'deleted' state is of course only logical - in a medico-legally safe
record, nothing can be actually deleted).

In both scenarios, it should be possible to change the status of a Composition without actually chang-
ing the Composition itself - i.e. without creating a new version. This requirement prevents storing it in
Composition itself; it is thus stored in the more logically correct place, VERSION. VER-
SION.lifecycle_state might in some systems be linked to the state of attestations (described below)
which are also attached to VERSION objects.

6.3.3 Attestation of Versions
Scenarios relating to attestation may cause attestations to be created at different times with respect to
the committal of data to the EHR, as follows:

• at committal: highly sensitive information is to be added to the EHR, e.g. recording the fact
of sectioning of a patient under the mental health act, diagnosis of a fatal disease etc. In this
case, attestation is added at committal to the EHR;

• post-committal: a data-entry person e.g. a secretary, transcriptionist or student is responsible
for entering the data, including routine things such as referrals, discharge summaries etc,
which need to be verified by the relevant clinician; this may occur after committal to the
EHR in some cases, leading to the temporary presence of entries "awaiting attestation" in
the record.

• not required: attestation not required - at many locations, many types of EHR additions do
not require any special attestation at all, and can be committed to the EHR by a wider range
of personnel.

As a result of these requirements, the model allows any number of attestations (from 0 to many) to be
associated with each version of a versioned object. Attestations are considered to be neither part of
the content, nor part of the audit information, but an external artifact which refers in to versions of
versioned items. Attestations can be added at any time.

The class CONTRIBUTION defines the common audit information for the set of versions added to the
repository due to a given contribution as well as a description of the contribution as a whole. CON-
TRIBUTIONS refer to their member VERSION objects via OBJECT_IDs; similarly, the audit object of
any VERSIONABLE refers to its creating CONTRIBUTION using an OBJECT_IDs reference.

These classes can be used to provide versioning and contributions in repositories such as an EHR, or
a demographic repository. In the EHR reference model for example, to obtain a versioned Composi-
tion, the type VERSION_REPOSITORY<COMPOSITION> is defined.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 37 of 45 Date of Issue: 09 Mar 2004

© 2003,2004 The openEHR Foundation

RM.COMMON.CHANGE_CONTROL Package The openEHR Common Information Model
Rev 1.5
6.4 Class Descriptions

6.4.1 VERSION_REPOSITORY Class

CLASS VERSION_REPOSITORY<T>

Purpose Version control abstraction, defining semantics for versioning one complex
object.

Attributes Signature Meaning

uid: OBJECT_ID Unique identifier of this version repository.

owner_id: OBJECT_REF Reference to object to which this versioned
repository belongs, e.g. the id of the contain-
ing EHR.

time_created: DV_DATE_TIME Time of initial creation of this versioned
object.

Functions Signature Meaning

all_versions:
List <VERSION<T>>

Return a list of all versions in this object.

all_version_ids:
List <String>

Return a list of ids of all versions in this
object.

version_count: Integer Return the total number of versions in this
object

has_version_id (an_id:
String): Boolean
require
an_id /= Void and then not
an_id.is_empty

True if a version with id ‘an_id’ exists.

has_version_at_time
(a_time:DV_DATE_TIME):
Boolean
require
a_time /= Void

True if a version for time ‘a_time’ exists.

version_with_id
(an_id:String): VERSION<T>
require
has_version_with_id(an_id)

Return the version with id ‘an_id’.
Date of Issue: 09 Mar 2004 Page 38 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003,2004 The openEHR Foundation

The openEHR Common Information Model RM.COMMON.CHANGE_CONTROL Package
Rev 1.5
6.4.2 AUDIT_DETAILS Class

6.4.3 VERSION Class

version_at_time
(a_time:DV_DATE_TIME): VER-
SION<T>
require
has_version_at_time(a_time)

Return the version for time ‘a_time’.

latest_version: VERSION<T> Return the latest version.

commit (an_audit:
VERSION_AUDIT; a_version: T)
require
an_audit /= Void
a_version /= Void

Add a new version.

Invariant

uid_exists: uid /= Void
owner_id_valid: owner_id /= Void
time_created_exists: time_created /= Void
versions_exists: version_count >= 1

CLASS AUDIT_DETAILS (abstract)

Purpose
The set of attributes required to document a new version of something. This class
can be inherited or used in a client/supplier relationship to provide audit trail
details to another class.

Attributes Signature Meaning

node: String Identity of the node where the item was com-
mitted.

committer: PARTY_REF Identity of party who committed the item.

time_committed:
DV_DATE_TIME

Time of committal of the item.

Invariants
Node_exists: node /= Void and then not node.empty
Committer_exists: committer /= Void
Time_committed_exists: time_committed /= Void

CLASS VERSION<T>

Purpose Versionable objects, with an audit trail containing details of change.

Attributes Signature Meaning

CLASS VERSION_REPOSITORY<T>
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 39 of 45 Date of Issue: 09 Mar 2004

© 2003,2004 The openEHR Foundation

RM.COMMON.CHANGE_CONTROL Package The openEHR Common Information Model
Rev 1.5
6.4.4 VERSION_AUDIT Class

data: T The data being versioned.

attestations:
List <ATTESTATION>

Set of attestations relating this version.

audit: VERSION_AUDIT Audit trail of this version.

version_id: String Unique identifier of this version.

preceding_version_id: String Unique identifier of the version on which this
version was based. May be the pseudo-ver-
sion “first”.

version_repository_id:
OBJECT_REF

A copy of the uid of the version repository to
which this version was added.

contribution: OBJECT_REF Contribution in which this version was
added.

lifecycle_state: DV_STATE Lifecycle state of the content item in this ver-
sion.

Functions Signature Meaning

uid: OBJECT_ID Unique identifier of this version, derived
from version repository id and version id.

Invariant

version_id_exists: version_id /= Void and then not version_id.is_empty
preceding_version_id_exists: preceding_version_id /= Void and then not
preceding_version_id.is_empty
version_repository_id_exists: version_repository_id /= Void
lifecycle_state_valid: lifecycle_state /= Void and then terminol-
ogy(“openehr”).codes_for_group_name(“version lifecycle state”,
“en”).has(lifecycle_state.value.defining_code)
audit_exists: audit /= Void
attestations_valid: attestations /= Void implies not attestations.is_empty
Contribution_exists: contribution /= Void
uid_valid: uid /= Void and uid.version_id.is_equal(version_id)

CLASS VERSION_AUDIT

Purpose Audit trail data for a version of something. Points back to a contribution object,
which contains the audit details common to all versions in a contribution.

Synapses Composition class

GEHR G1_COMMIT_AUDIT

CLASS VERSION<T>
Date of Issue: 09 Mar 2004 Page 40 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003,2004 The openEHR Foundation

The openEHR Common Information Model RM.COMMON.CHANGE_CONTROL Package
Rev 1.5
6.4.5 CONTRIBUTION Class

6.5 Transaction Semantics of Contributions
In terms of database management, Contributions are considered as nested transactions. The attempt to
commit a Contribution should only succeed if each VERSION instance in the Contribution is commit-
ted successfully. Failure to commit any of the member instances should cause failure of the Contribu-
tion.

Inherit AUDIT_DETAILS

Attributes Signature Meaning

change_type: DV_CODED_TEXT Type of change. Coded using the openEHR
Terminology “audit change type” group.

Invariant
Change_type_exists: change_type /= Void and then terminol-
ogy(“openehr”).codes_for_group_name(“audit change type”,
“en”).has(change_type.defining_code)

CLASS CONTRIBUTION

Purpose Documents a contribution of one or more versions added to a change-controlled
repository.

Inherit AUDIT_DETAILS

Attributes Signature Meaning

uid: OBJECT_ID Unique identifier for this contribution.

description: DV_TEXT Reason for committal.

versions: Set<OBJECT_REF> Set of references to versions causing
changes to this EHR. Each contribution
contains a list of versions, which may
include paths pointing to any number of
VERSIONABLE items, i.e. items of type
COMPOSITION and FOLDER.

Invariants
uid_exists: uid /= Void
Description_exists: description /= Void
Versions_valid: versions /= Void and then not versions.empty

CLASS VERSION_AUDIT
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 41 of 45 Date of Issue: 09 Mar 2004

© 2003,2004 The openEHR Foundation

RM.COMMON.CHANGE_CONTROL Package The openEHR Common Information Model
Rev 1.5
Date of Issue: 09 Mar 2004 Page 42 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003,2004 The openEHR Foundation

The openEHR Common Information Model References
Rev 1.5
A References

A.1 General
1 Beale T. Archetypes: Constraint-based Domain Models for Future-proof Information Systems.

See http://www.deepthought.com.au/it/archetypes.html.

2 Beale T et al. Design Principles for the EHR. See http://www.openEHR.org.

3 Cimino J J. Desiderata for Controlled Medical vocabularies in the Twenty-First Century. IMIA
WG6 Conference, Jacksonville, Florida, Jan 19-22, 1997.

4 Schloeffel P. (Editor). Requirements for an Electronic Health Record Reference Architecture.
International Standards Organisation, Australia; Feb 2002; ISO TC 215/SC N; ISO/WD 18308.

A.2 European Projects
5 Dixon R., Grubb P.A., Lloyd D., and Kalra D. Consolidated List of Requirements. EHCR Sup-

port Action Deliverable 1.4. European Commission DGXIII, Brussels; May 200159pp Availa-
ble from http://www.chime.ucl.ac.uk/HealthI/EHCR-SupA/del1-4v1_3.PDF.

6 Dixon R, Grubb P, Lloyd D. EHCR Support Action Deliverable 3.5: "Final Recommendations
to CEN for future work". Oct 2000. Available at http://www.chime.ucl.ac.uk/HealthI/EHCR-
SupA/documents.htm.

7 Dixon R, Grubb P, Lloyd D. EHCR Support Action Deliverable 2.4 "Guidelines on Interpreta-
tion and implementation of CEN EHCRA". Oct 2000. Available at ht-
tp://www.chime.ucl.ac.uk/HealthI/EHCR-SupA/documents.htm.

8 Ingram D. The Good European Health Record Project. Laires, Laderia Christensen, Eds. Health
in the New Communications Age. Amsterdam: IOS Press; 1995; pp. 66-74.

9 Deliverable 19,20,24: GEHR Architecture. GEHR Project 30/6/1995

A.3 CEN
10 ENV 13606-1 - Electronic healthcare record communication - Part 1: Extended architecture.

CEN/ TC 251 Health Informatics Technical Committee.

11 ENV 13606-2 - Electronic healthcare record communication - Part 2: Domain term list. CEN/
TC 251 Health Informatics Technical Committee.

12 ENV 13606-4 - Electronic Healthcare Record Communication standard Part 4: Messages for
the exchange of information. CEN/ TC 251 Health Informatics Technical Committee.

A.4 OMG
13 CORBAmed document: Person Identification Service. (March 1999). (Authors?)

14 CORBAmed document: Lexicon Query Service. (March 1999). (Authors?)
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 43 of 45 Date of Issue: 09 Mar 2004

© 2003,2004 The openEHR Foundation

http://www.deepthought.com.au/it/archetypes.html
http://www.openehr.org
http://www.chime.ucl.ac.uk/HealthI/EHCR-SupA/del1-4v1_3.PDF
http://www.chime.ucl.ac.uk/HealthI/EHCR-SupA/documents.htm
http://www.chime.ucl.ac.uk/HealthI/EHCR-SupA/documents.htm
http://www.chime.ucl.ac.uk/HealthI/EHCR-SupA/documents.htm
http://www.chime.ucl.ac.uk/HealthI/EHCR-SupA/documents.htm

References The openEHR Common Information Model
Rev 1.5
A.5 Software Engineering
15 Meyer B. Object-oriented Software Construction, 2nd Ed.

Prentice Hall 1997

16 Fowler M. Analysis Patterns: Reusable Object Models. Addison Wesley 1997

17 Fowler M, Scott K. UML Distilled (2nd Ed.). Addison Wesley Longman 2000

A.6 Resources
18 IANA - http://www.iana.org/.
Date of Issue: 09 Mar 2004 Page 44 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003,2004 The openEHR Foundation

http://www.iana.org/

The openEHR Common Information Model
Rev 1.5

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 45 of 45 Date of Issue: 09 Mar 2004

© 2003,2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

END OF DOCUMENT

	REFERENCE MODEL
	The openEHR Common Information Model
	Copyright Notice
	Amendment Record
	Acknowledgements
	Table of Contents
	1 Introduction
	1.1 Purpose
	1.2 Related Documents
	1.3 Status
	1.4 Peer review

	2 Overview
	3 RM.COMMON.IDENTIFICATION Package
	3.1 Requirements
	3.2 Overview
	3.3 Class Descriptions
	3.3.1 OBJECT_REF Class
	3.3.2 ACCESS_GROUP_REF Class
	3.3.3 PARTY_REF Class
	3.3.4 OBJECT_ID Class
	3.3.5 HIER_OBJECT_ID Class
	3.3.5.1 Syntax

	3.3.6 ARCHETYPE_ID Class
	3.3.6.1 Archetype ID Syntax

	3.3.7 TERMINOLOGY_ID Class
	3.3.7.1 Identifier Syntax

	3.3.8 UID Class
	3.3.9 ISO_OID Class
	3.3.10 UUID Class

	4 RM.COMMON.ARCHETYPED Package
	4.1 Overview
	4.1.1 The Root Class LOCATABLE
	4.1.2 Feeder Systems

	4.2 Class Descriptions
	4.2.1 Class LOCATABLE
	4.2.2 ARCHETYPED Class
	4.2.3 LINK Class
	4.2.4 FEEDER_AUDIT Class

	5 RM.COMMON.GENERIC Package
	5.1 Overview
	5.2 Participation
	5.3 Attestation
	5.3.1 Related Parties

	5.4 Class Descriptions
	5.4.1 PARTICIPATION Class
	5.4.2 ATTESTATION Class
	5.4.3 RELATED_PARTY Class

	6 RM.COMMON.CHANGE_CONTROL Package
	6.1 Overview
	6.2 The Configuration Management Paradigm
	6.2.1 Organisation of the Repository
	6.2.2 Change Management
	6.2.3 Changes in Time
	6.2.4 General Model of a Change-controlled Repository

	6.3 Formal Model
	6.3.1 Versioned Items
	6.3.2 Version Lifecycle
	6.3.3 Attestation of Versions

	6.4 Class Descriptions
	6.4.1 VERSION_REPOSITORY Class
	6.4.2 AUDIT_DETAILS Class
	6.4.3 VERSION Class
	6.4.4 VERSION_AUDIT Class
	6.4.5 CONTRIBUTION Class

	6.5 Transaction Semantics of Contributions

	A References
	A.1 General
	A.2 European Projects
	A.3 CEN
	A.4 OMG
	A.5 Software Engineering
	A.6 Resources

