
The openEHR Data Types Information Model
Rev 1.8

Editors:{T Beale, S Heard}
REFERENCE MODEL

The openEHR Data Types Information Model

Editors:{T Beale, S Heard}1, {D Kalra, D Lloyd}2

Revision: 1.8

Pages: 85

1. Ocean Informatics Australia

2. Centre for Health Informatics and Multi-professional Educa-
tion, University College London
, {D Kalra, D Lloyd} Page 1 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

© 2003 The openEHR Foundation

The openEHR foundation
is an independent, non-profit community, facilitating the creation and sharing

of health records by consumers and clinicians via open-source, standards-
based implementations.

email: info@openEHR.org web: http://www.openEHR.org

Founding
Chairman

David Ingram, Professor of Health Informatics, CHIME, University
College London

Founding
Members

Dr P Schloeffel, Dr S Heard, Dr D Kalra, D Lloyd, T Beale

Patrons To Be Announced

The openEHR Data Types Information Model
Rev 1.8
Copyright Notice

© Copyright openEHR Foundation 2001 - 2004

All Rights Reserved

1. This document is protected by copyright and/or database right throughout the
world and is owned by the openEHR Foundation.

2. You may read and print the document for private, non-commercial use.
3. You may use this document (in whole or in part) for the purposes of making

presentations and education, so long as such purposes are non-commercial and
are designed to comment on, further the goals of, or inform third parties about,
openEHR.

4. You must not alter, modify, add to or delete anything from the document you
use (except as is permitted in paragraphs 2 and 3 above).

5. You shall, in any use of this document, include an acknowledgement in the
form:

"© Copyright openEHR Foundation 2001-2004. All rights reserved.
www.openEHR.org"

6. This document is being provided as a service to the academic community and
on a non-commercial basis. Accordingly, to the fullest extent permitted under
applicable law, the openEHR Foundation accepts no liability and offers no
warranties in relation to the materials and documentation and their content.

7. If you wish to commercialise, license, sell, distribute, use or otherwise copy the
materials and documents on this site other than as provided for in paragraphs 1
to 6 above, you must comply with the terms and conditions of the openEHR
Free Commercial Use Licence, or enter into a separate written agreement with
openEHR Foundation covering such activities. The terms and conditions of the
openEHR Free Commercial Use Licence can be found at
http://www.openehr.org/free_commercial_use.htm
Date of Issue: 09 Mar 2004 Page 2 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model
Rev 1.8
Amendment Record

Issue Details Who Completed

1.8 CR-000023. TERM_MAPPING.match should be coded/enumer-
ated.
CR-000069. Correct date/time types statistical descriptions.
CR-000046. Rename COORDINATED_TERM to CODE_PHRASE

and DV_CODED_TEXT.definition to defining_code.
CR-000084. Rename DV_COUNTABLE to DV_COUNT.

CR-000090. Make TERM_MAPPING.purpose optional.
CR-000091. Correct anomalies in use of CODE_PHRASE and
DV_CODED_TEXT.
CR-000094. Add lifecycle state attribute to VERSION; correct
DV_STATE.
CR-000095. Remove property attribute from Quantity package.
Formally validated using ISE Eiffel 5.4.

G Grieve

A Goodchild
T Beale

DSTC
DSTC

T Beale

DSTC

DSTC,
S Heard

09 Mar 2004

1.7.9 CR-000066. Make DV_ORDERED.normal_range a function.
Correct UML for DV_QUANTITY.

Z Tun 10 Nov 2003

1.7.8 CR-000053. Make DV_ORDINAL.limits a function.
CR-000054. Move DV_QUANTIFIED.is_normal to DV_ORDERED

CR-000055. Redefine DV_ORDERED.less_than as infix function
'<'.

T Beale 02 Nov 2003

1.7.7 CR-000041. Visually differentiate primitive types in openEHR
documents.
CR-000034. State representation of date/time classes to be
ISO8601.
CR-000052. Change DV_DURATION.sign to prefix "-" operation.
CR-000042. Make DV_ORDINAL.rubric a DV_CODED_TEXT;
type attribute not needed.

D Lloyd,
DSTC,
T Beale

26 Oct 2003

1.7.6 CR-000013. Rename key classes, according to CEN ENV
13606.
CR-000026. Rename DV_QUANTITY.value to magnitude.
CR-000031. Change abstract NUMERIC to DOUBLE in
DV_QUANTITY.value.

S Heard, D
Kalra, T
Beale, A

Goodchild, Z
Tun

01 Oct 2003

1.7.5 CR-000022. Code TERM_MAPPING.purpose. G Grieve 20 Jun 2003

1.7.4 CR-000020. Move VERSION.charset to DV_TEXT, territory to
TRANSACTION. Remove VERSION.language.

A Goodchild 10 Jun 2003

1.7.3 DV_INTERVAL now inherits from INTERVAL to avoid duplicating
semantics. (Formally validated).

T Beale 25 Mar 2003

1.7.2 Minor corrections to diagrams in Text package. Improved head-
ing structure, package naming. Corrected error in TEXT package
diagram. Replaced TEXT_FORMAT_PROPERTY class with string
attribute of same form. Made MULTIMEDIA.media_type manda-
tory. (Formally validated).

T Beale,
Z Tun

21 Mar 2003

1.7.1 Moved definitions and assumed types to Support Reference
Model. No semantic changes.

T Beale 25 Feb 2003
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 3 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

The openEHR Data Types Information Model
Rev 1.8
1.7 Formally validated using ISE Eiffel 5.2.
CR-000000. Review of Data Types specification.
Made pluralities of Terminology name definitions (sect 3.2.1)
consistent.
Corrected types of DV_ENCAPSULATED.language, charset,
DV_MULTIMEDIA.integrity_check_algorithm,
compression_algorithm, media_type.
Corrected pluralities of Terminology name definitions (sect
3.2.1).
Corrected invariants of DV_ENCAPSULATED, DV_MULTI_MEDIA,
DV_QUANTITY, DV_CODED_TEXT, DV_TEXT, DV_INTERVAL,
TERM_MAPPING.
Corrected DV_TEXT.formatting; added TERM_MAPPING validity
function. Made DV_ORDINAL.limits an attribute. Removed
TERM_MAPPING.source; moved COORDINATED_TERM.language
to DV_TEXT; changed type to COOORDINATED_TERM.
Corrected time specification classes.

Z Tun,
T Beale

17 Feb 2003

1.6.1 Rome CEN TC 251 meeting. Updates to HL7 comparison
text. DV_DATE now inherits from DV_CUSTOMARY_QUANTITY.

S Heard,
T Beale

27 Jan 2003

1.6 Sam Heard complete review. Changed constant terminology
defs to runtime-evaluated set; removed DV_PHYSICAL_DATA.
Added new chapter for generic implementation guidelines, and
new section for assumed types. Post-conditions moved to invar-
iants: DV_TEXT.value, DV_ORDERED.is_simple,
DV_PARTIAL_DATE.probable_date, possible_dates,
DV_PARTIAL_TIME.probable_time, possible_times. Minor
updates to HL7 comparison text. Added explanation to HL7
section.

S Heard,
T Beale

13 Dec 2002

1.5.9 Minor corrections: DV_ENCAPSULATED; DV_QUANTITY.units
defined to be String; changed COORDINATED_TERM class (but
semantically equivalent).

T Beale 10 Nov 2002

1.5.8 Changed name of LINK package to URI. Major update to Text
cluster classes and explanation. Updated HL7 data type com-
parison.

T Beale,
D Kalra,
D Lloyd,

M Darlison

1 Nov 2002

1.5.7 DV_TEXT_LIST reverted to TEXT_LIST. DV_LINK no longer a data
types; renamed to LINK and moved to Common RM. Link pack-
age renamed to “URI”.

S Heard,
Z Tun,

T Beale,
D Kalra,

M Darlison

18 Oct 2002

1.5.6 Rewrite of TIME_SPECIFICATION parse specs. Adjustments to
DV_ORDINAL.

T Beale 16 Sep 2002

1.5.5 Timezone not allowed on pure DV_DATE in ISO8601. T Beale,
S Heard

2 Sep 2002

1.5.4 Moved DV_QUANTIFIED.units and property attributes to
DV_QUANTITY. Introduced DV_WORLD_TIME.to_quantity. Added
fractional_second to DV_TIME, DV_DATE_TIME, DV_DURATION.

T Beale,
S Heard

29 Aug 2002

Issue Details Who Completed
Date of Issue: 09 Mar 2004 Page 4 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model
Rev 1.8
Acknowledgements
The work reported in this paper has been funded by a number of organisations, including The Univer-
sity College, London; The Cooperative Research Centres Program through the Department of the
Prime Minister and Cabinet of the Commonwealth Government of Australia; Ocean Informatics,
Australia.

1.5.3 Further corrections - removed derived ‘/’ markers; renamed
TERM_MAPPING.granularity to match. Improved explanation of
DV_ORDINAL. DV_QUANTIFIED.units is now a DV_PARSABLE.
REFERENCE_RANGE.meaning is now a DV_TEXT.
DV_ENCAPSULATED.uri is now a DV_URI. DV_LINK.type is now a
DV_TEXT. Detailed review by Zar Zar Tun (DSTC).

T Beale,
S Heard,

P Schloeffel,
D Lloyd,

Z Tun

20 Aug 2002

1.5.2 Further corrections - removed derived ‘/’ markers; renamed
TERM_MAPPING.granularity to match.

T Beale,
D Lloyd,
S Heard

15 Aug 2002

1.5.1 Minor corrections. T Beale,
S Heard

15 Aug 2002

1.5 Rewrite of section describing text types; addition of new
attribute DV_CODED_TEXT.mappings. Removal of
TERM_REFERENCE.concept_code.

T Beale,
S Heard

1 Aug 2002

1.4.3 Minor changes to text. Corrections to DV_CODED_TEXT rela-
tionships. Made DV_INTERVAL.lower_unbounded and
DV_INTERVAL.upper_unbounded functions.

T Beale,
Z Tun

16 Jul 2002

1.4.2 DV_LINK.meaning changed to DV_TEXT (typo in table). Added
abstract class DV_WORLD_TIME.

T Beale,
D Lloyd

14 Jul 2002

1.4.1 Changes to DV_ENCAPSULATED, DV_PARSABLE invariants. T Beale
Z Tun

10 Jul 2002

1.4 DV_ENCAPSULATED. text_equivalent renamed to
DV_ENCAPSULATED.alternate_text. Added invariant for QUAN-

TITY.precision.

T Beale,
D Lloyd

1 Jul 2002

1.3 Added timezone to DV_TIME and DV_DATE_TIME and sign to
DV_DURATION; added linguistic_order to TERM_RELATION;
added as_display_string and as_canonical_string to all types.
Added DV_STATE.is_terminal. Renamed TERM_TEXT as
CODED_TEXT.

T Beale,
D Lloyd

30 Jun 2002

1.2 Minor corrections to Text package. T Beale 15 May 2002

1.1 Numerous small changes, including: term equivalents, relation-
ships and quantity reference ranges.

T Beale,
D Lloyd,

D Kalra, S
Heard

10 May 2002

1.0 Separated from the openEHR Reference Model. T Beale 5 May 2002

Issue Details Who Completed
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 5 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

The openEHR Data Types Information Model
Rev 1.8
Date of Issue: 09 Mar 2004 Page 6 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model
Rev 1.8
Table of Contents
Copyright Notice ...2
Amendment Record ..3
Acknowledgements ...5
Table of Contents ..7

1 Introduction...11
1.1 Purpose...11
1.2 Related Documents ..11
1.3 Status..11
1.4 Peer review ..11

2 Background .. 13
2.1 Scope..13
2.2 Design Criteria ...13
2.3 Prior Work..14

3 Introduction.. 15
3.1 Overview..15
3.2 Package Structure...15

4 RM.DATA_TYPES.BASIC Package.................................... 16
4.1 Overview..16
4.2 Class Descriptions..16
4.2.1 DATA_VALUE Class ..16
4.2.2 DV_BOOLEAN Class...16
4.2.3 DV_STATE Class ..18

5 RM.DATA_TYPES.TEXT Package 21
5.1 Overview..21
5.1.1 Requirements ...21
5.1.1.1 Narrative Text ...22
5.1.1.2 Terminological Entities ...22
5.1.2 Design..23
5.1.3 Qualification ..24
5.1.4 Meaning Modification ...24
5.1.4.1 Mode-changing Terms ..24
5.1.4.2 Context Sensitivity ..24
5.1.4.3 Negation ..25
5.1.4.4 Representation of Meaning-Modifying Terms ...25
5.1.5 Mappings ...26
5.1.5.1 Classification (Broader Terms) ...26
5.1.5.2 Equivalents (Synonymous Terms) ..27
5.1.5.3 More Specific Mappings (Narrower Terms) ...27
5.1.5.4 The Unified Medical Language System (UMLS)27
5.1.5.5 Legacy Mapping Scenarios ...28
5.1.6 Language Translations...28
5.2 Class Descriptions..28
5.2.1 DV_TEXT Class..28
5.2.2 TERM_MAPPING Class...30
5.2.3 CODE_PHRASE Class ...31
5.2.4 DV_CODED_TEXT Class..32
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 7 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

The openEHR Data Types Information Model
Rev 1.8
5.2.5 DV_PARAGRAPH Class.. 32

6 RM.DATA_TYPES.QUANTITY Package 35
6.1 Overview ... 35
6.1.1 Requirements... 36
6.1.2 Overall Design... 36
6.1.3 Ordinal Values ... 37
6.1.4 Accuracy and Uncertainty... 38
6.1.5 Reference Ranges.. 38
6.1.6 Statistical Reference Data ... 39
6.2 Class Descriptions ... 39
6.2.1 DV_ORDERED Class... 39
6.2.2 DV_INTERVAL<T : DV_ORDERED> Class.............................. 40
6.2.3 REFERENCE_RANGE<T:DV_ORDERED> Class 41
6.2.4 DV_ORDINAL Class ... 41
6.2.5 DV_QUANTIFIED Class ... 42
6.2.6 DV_MEASURABLE Class .. 44
6.2.7 DV_QUANTITY Class... 44
6.2.8 DV_COUNT Class.. 45
6.2.9 Units Syntax .. 46
6.2.10 DV_QUANTITY_RATIO Class ... 47
6.2.11 DV_CUSTOMARY_QUANTITY Class...................................... 47

7 RM.DATA_TYPES.QUANTITY.DATE_TIME Package .. 49
7.1 Overview ... 49
7.1.1 Design Basis.. 49
7.1.2 Fuzzy and Incomplete Date/Times.. 50
7.1.3 Calendar .. 51
7.1.4 Representation... 51
7.2 Definitions ... 51
7.3 Class Descriptions ... 52
7.3.1 DV_WORLD_TIME Class ... 52
7.3.2 DV_DATE Class ... 52
7.3.3 DV_TIME Class.. 53
7.3.4 DV_DATE_TIME Class ... 55
7.3.5 DV_DURATION Class ... 56
7.3.6 DV_PARTIAL_DATE Class... 57
7.3.7 DV_PARTIAL_TIME Class ... 58

8 RM.DATA_TYPES.TIME_SPECIFICATION Package.... 61
8.1 Overview ... 61
8.1.1 The HL7 / ISO 8601 Approach... 62
8.2 Class Descriptions ... 62
8.2.1 DV_TIME_SPECIFICATION Class... 62
8.2.2 DV_PERIODIC_TIME_SPECIFICATION Class 63
8.2.2.1 Phase-linked Time Specification Syntax .. 63
8.2.2.2 Event-linked Periodic Time Specification Syntax 64
8.2.3 DV_GENERAL_TIME_SPECIFICATION Class........................ 64
8.2.3.1 General Time Specification Syntax .. 65

9 RM.DATA_TYPES.ENCAPSULATED Package................ 66
Date of Issue: 09 Mar 2004 Page 8 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model
Rev 1.8
9.1 Overview..66
9.2 Class Descriptions..66
9.2.1 DV_ENCAPSULATED Class ...66
9.2.2 DV_MULTIMEDIA Class ..67
9.2.3 DV_PARSABLE Class..69

10 RM.DATA_TYPES.URI Package... 70
10.1 Overview..70
10.2 Definitions ...70
10.3 Class Descriptions..70
10.3.1 DV_URI Class ...71
10.3.2 DV_EHR_URI Class ...72
10.3.2.1 DV_EHR_URI Syntax ..73

11 Implementation Strategies .. 74
11.1 Overview..74
11.2 Unicode..74
11.3 Dates and Times...74

12 Comparison with HL7v3 Types .. 75
12.1 Scope..75
12.2 Design Differences...75
12.2.1 Naming ..75
12.2.2 Identification..76
12.2.3 Archetyping ...76
12.2.4 Treatment of Inbuilt Types ..76
12.2.5 Use of Null Markers ..77
12.2.6 Terminology Approach..80
12.2.7 Date/Time Approach..80
12.2.8 Time Specification Types ..80
12.2.9 Type Conversions ..81

A References ... 83
A.1 General...83
A.2 European Projects ..83
A.3 CEN ...83
A.4 GEHR Australia ...83
A.5 HL7 ..84
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 9 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

The openEHR Data Types Information Model
Rev 1.8
Date of Issue: 09 Mar 2004 Page 10 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model Introduction
Rev 1.8
1 Introduction

1.1 Purpose
This document describes the openEHR Data Types Reference Model, which is used in common by all
openEHR Reference Models, primarily the EHR Reference Model. The intended audience includes:

• Standards bodies producing health informatics standards;

• Software development organisations developing EHR systems;

• Academic groups studying the EHR;

• The open source healthcare community;

• Medical informaticians and clinicians intersted in health information;

• Health data managers.

1.2 Related Documents
Prerequisite documents for reading this document include:

• The openEHR Modelling Guide

Other documents describing related models, include:

• The openEHR Data Types Archetype Model

• The openEHR EHR Reference Model

• The openEHR Demographic Reference Model

1.3 Status
This document is under development, and is published as a proposal for input to standards processes
and implementation works.

Currently the UML diagrams are hand-produced. None of the existing tools (e.g. Rose, Objecteering),
includes sufficient support of UML or has good enough visual quality to use here. However, UML
tools are constantly under investigation, and this situation may change in the future.

Also in the future, specific design principles will be referred to throughout the model text, so that
readers can easily find the theoretical discussion on which any part of the model is based.

The latest version of this document can be found in PDF and HTML formats at
http://www.openEHR.org/Doc_html/Model/Reference/data_types_rm.htm. New ver-
sions are announced on openehr-announce@openehr.org.

1.4 Peer review
Areas where more analysis or explanation is required are indicated with “to be continued” paragraphs
like the following:

To Be Continued: more work required

Reviewers are encouraged to comment on and/or advise on these paragraphs as well as the main con-
tent. Please send requests for information to info@openEHR.org. Feedback should preferably be
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 11 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

http://www.openEHR.org/Doc_html/Model/Reference/data_types_rm.htm
mailto:openehr-technical@openehr.org
mailto:openehr-announce@openehr.org
mailto:info@gehr.org

Introduction The openEHR Data Types Information Model
Rev 1.8
discussed on one of the appropriate mailing lists, openehr-technical@openehr.org or
openehr-clinical@openehr.org.
Date of Issue: 09 Mar 2004 Page 12 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

mailto:openehr-technical@openehr.org
mailto:openehr-clinical@openehr.org

The openEHR Data Types Information Model Background
Rev 1.8
2 Background

2.1 Scope
The data type specification presented here defines the data types which are used in the openEHR ref-
erence models. Harmonisation of data types between information models used by related services in a
health information infrastructure is essential to reducing the conversion work and potential for errors
between these services. Accordingly, the openEHR data type specification is intended to work not
only for the EHR, but also for other models defined by openEHR, such as the openEHR demographic
and terminological models.

The types described here have been derived from data types used in the GEHR [14], Synapses and
SynEx [10], CEN 13606 [11], [13] and particularly the HL7v3 [15] reference models.

2.2 Design Criteria
Over and above the need to satisfy the functional requirements of clinical data, three concerns have
driven the design of the openEHR data types:

1. clarity of expression

2. ease of implementation

3. interoperability with data types from other standards

The first of these has led to models which try to clearly convey the semantics of types required by the
clinical domain. The use of constraints (pre- and post-conditions and class invariants) and a compre-
hensible class structure ensures formal self-consistency, correct type-substitutability and implementa-
bility in object-oriented formalisms. Types have been designed so as not to clash with norms of
object-oriented languages and libraries, in particular, class names and the inbuilt types. Accordingly,
all types presented here have a logical name commencing with ‘DV_’, ensuring that there is no clash
with a type in the implementation formalism, hence the type DV_DATE presented here will not be con-
fused with the type DATE which appears in many programming languages or libraries.

Object-oriented languages which have been considered include IDL, C++, Java, C#, Eiffel, Delphi
and Python. Each of these languages obeys some variant of the well-known semantics of classes,
encapsulation, typing and inheritance. The data types described here follow the tenets of object-orien-
tation defined in UML most closely, while being careful not to invalidate their implementation in any
language. The models have all been validated by implementation in the Eiffel language, the closest
available semantic fit for UML, and currently the most powerful of mainstream object-oriented for-
malisms.

Implementability in XML-schema has also been an important design criterion, and the current data
types remove many of the problems which the GEHR and CEN data types presented for XML-
schema. It should be noted at the outset that there has been no attempt to support XML-DTD, since it
has no type system, and cannot reliably be reasoned about in an object-oriented way.

To simplify implementation in all object-oriented formalisms, including IDL, programming lan-
guages and X-schema, multiple inheritance has been avoided (only marginal cases were identified
anyway). Generic classes have however been used extensively, since they significantly clarify the
model. Type genericity is available in Eiffel, C++, and soon in Java; for languages not having it, there
is a well-known transformation from models containing generic classes to classes for non-generic
types systems (see for example [3]).
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 13 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

Background The openEHR Data Types Information Model
Rev 1.8
Implementability in relational databases has also been considered, and appears relatively straightfor-
ward, since only the data view of the types needs to be represented. Many implementations are likely
to use only a single String or XML string to represent each entire data instance, which significantly
simplifies things.

2.3 Prior Work
Four other type systems for clinical data, namely the GEHR data types, the HL7 v3 data types, the
CEN 13606 data item types, and the Corbamed data types were carefully scrutinised in order to
ensure a) that all needed types were covered in the openEHR specification, and b) that data conver-
sion will be possible. Concepts from all three are cross-referenced throughout this specification where
possible.

Because the HL7v3 data type specification is a widely available and comprehensive specification for
clinican data types, particular attention has been paid to incorporating its semantics, as well as fixing
errors or shortcomings. While there are differences both in design approach and in detail, a significant
debt must be recognised to the authors of this work, from which many ideas in the present specifica-
tion were drawn. A detailed discussion is found under Comparison with HL7v3 Types on page 75.
Date of Issue: 09 Mar 2004 Page 14 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model Introduction
Rev 1.8
3 Introduction

3.1 Overview
This data type specification constitutes the lowest level of technical specification of openEHR, and
describes a set of types suitable for use in clinical and related information structures. In order for such
types to exist, a set of primitive types is assumed, namely Integer, Real, Boolean, Character,
String, List<T>, Set<T>, and Array<T>. These have standard definitions in the OMG object
model used in UML, OCL, and are available in almost all type systems. The exact assumptions are
described in the openEHR Support Reference Model. A number of symbolic definitions (similar to
constants in programming) are also described in the Support RM.

The data types described here are named with the class prefix “DV_”, and inherit from the class
DATA_VALUE. They have two distinct uses in reference models. Firstly, they may be used as “data
values” in reference model structures wherever the DATA_VALUE class appears, for example, in the
EHR Reference Model (RM) via the ELEMENT.value attribute. Additionally, specific subtypes of the
data types described here can also be used as attribute types in other classes in reference models, such
as date/times, coded terms and so on. The difference is that in the former case, only subtypes of
DATA_VALUE may be used, whilst in the latter case, other types may be used as well, from the
assumed set of basic types.

3.2 Package Structure
The package structure of the openEHR data types is illustrated in FIGURE 1.

FIGURE 1 DATA_TYPES Package

DATA_VALUE

DATE_TIME

QUANTITY

TEXT

ENCAPSULATED

BASIC TIME_SPECIFICATION URI

DATA_TYPES
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 15 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

RM.DATA_TYPES.BASIC Package The openEHR Data Types Information Model
Rev 1.8
4 RM.DATA_TYPES.BASIC Package

4.1 Overview
The Basic package, illustrated in FIGURE 2, contains types representing the concepts of “boolean”
and “state”.

4.2 Class Descriptions

4.2.1 DATA_VALUE Class

4.2.2 DV_BOOLEAN Class

CLASS DATA_VALUE (abstract)

Purpose Serves as a common ancestor of all data value types in openEHR models.

ISO 18308 STR 3.1 - 3.13

CEN The Data_Item class in CEN is a mixture of DATA_VALUE and ELEMENT in
openEHR.

OMG HDTF COAS::ObservationValue

HL7 DataValue (ANY)

Invariants

CLASS DV_BOOLEAN

Purpose Items which are truly boolean data, such as true/false or yes/no answers.

Use For such data, it is important to devise the meanings (usually questions in subjec-
tive data) carefully, so that the only allowed results are in fact true or false.

MisUse
The DV_BOOLEAN class should not be used as a replacement for naively modelled
enumerated types such as male/female etc. Such values should be coded, and in
any case the enumeration often has more than two values.

BASIC

FIGURE 2 RM.DATA_TYPES.BASIC Package

DATA_VALUE

DV_BOOLEAN

value[1]: Boolean

DV_STATE

value[1]: String

is_terminal[1]: Boolean
Date of Issue: 09 Mar 2004 Page 16 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model RM.DATA_TYPES.BASIC Package
Rev 1.8
ISO 18308 (none)

CEN Not provided as a subtype of Data Item

Synapses A special use of the Numeric class is defined to represent the Boolean data type,
limiting the permitted values to zero or one.

HL7

Boolean (BL) type. HL7 also allows NULL values, which is problematic for a)
the understanding of Boolean, normally expected to be either True or False, and
b) implementation in nearly all programming languages, in which Boolean is a
value type (i.e. cannot be NULL).

Inherit DATA_VALUE

Attributes Signature Meaning

value: Boolean Boolean value of this item.

Invariants

CLASS DV_BOOLEAN
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 17 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

RM.DATA_TYPES.BASIC Package The openEHR Data Types Information Model
Rev 1.8
4.2.3 DV_STATE Class

An example of a state machine which models the state of a medication order is illustrated in FIGURE
3. This definition would appear in an archetype; the values of a DV_STATE object are then restricted
to the values of the states in the definition.

CLASS DV_STATE

Purpose For representing state values which obey a defined state machine, such as a vari-
able representing the states of an instruction or care process.

Use
DV_STATE is expressed as a String but its values are driven by archetype-
defined state machines. This provides a powerful way of capturing stateful com-
plex processes in simple data.

ISO 18308 (none)

CEN The Component Annotation Life Cycle was intended to permit architectural com-
ponents to include a reference to this aspect of state.

Synapses
The Element class includes an attribute LifeCycle to indicate the lifecycle of an
instruction or action, with permitted values taken from the ENV13606-2 Domain
Termlist Component Annotation of the same name.

Inherit DATA_VALUE

Attributes Signature Meaning

value: DV_CODED_TEXT The state name. State names are determined
by a state/event table defined in archetypes,
and coded using openEHR Terminology or
local archetype terms, as specified by the
archetype.

is_terminal: Boolean Indicates whether this state is a terminal
state, such as “aborted”, “completed” etc
from which no further transitions are possi-
ble.

Invariants value_exists: value /= Void
Date of Issue: 09 Mar 2004 Page 18 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model RM.DATA_TYPES.BASIC Package
Rev 1.8
PROPOSED ORDERED IN_EXECUTION

CANCELLED SUSPENDEDOVERDUE

COMPLETED
order

suspend
cancel, start_fail

supersede

cancel,
supersede

start finish

start

cancel

start

FIGURE 3 Example State Machine for Medication Orders

restart
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 19 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

RM.DATA_TYPES.BASIC Package The openEHR Data Types Information Model
Rev 1.8
Date of Issue: 09 Mar 2004 Page 20 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model RM.DATA_TYPES.TEXT Package
Rev 1.8
5 RM.DATA_TYPES.TEXT Package

5.1 Overview
The Text package contains classes for representing all textual values in the health record, including
plain text, coded terms, and narrative text. It is illustrated in FIGURE 4.

5.1.1 Requirements
The sections below describe the requirements of text data types. Two overriding principles should be
noted at the outset with regard to text.

1. Regardless of what terminologies are (or are not) available to the clinician and/or the soft-
ware, the primary requirement is that in all cases clinicians are able to record exactly what
they want to say. This means that if they want to record something very general, such as
“cold” or a very specific term such as “Ross River Virus infection” they should be able to,
whether or not the appropriate terms are available. However, the facility should be available
to additionally ‘code’ any such textual item, at the time or indeed at some later time, so as to
satisfy reporting or other needs.

2. It is assumed that any client of terminology, such as the EHR, uses a terminology service
which provides a complete interface to the terminology part of the knowledge domain. The
coded text type reflects this. Accordingly, there is no concept of “post-coordination”
allowed by the data types described here: the only thing that is available from the terminol-
ogy service is a key which refers to a lexical entity, which may be a single term or a code
phrase, and which may be part of a reference terminology and/or linked to element(s) of
underlying ontologies. It is also assumed that there is no direct access to any particular ter-
minology; access to all terminologies (whether simple coded lexicons or large semantic
networks) is via the same abstract interface.

Terminology Ids are likely to be of various types.

1. Terminology_Id = “LOCAL”: this constant value means that the origin of allowable values
is described within the archetype. This is coded to allow translation. The local archetype
then only needs the set of codes and the local translation. The archetype may contain a trans-
lation table if required.

2. Terminology_Id = “[authority]:[Domain value set]”. This might be “HL7:Gender”

FIGURE 4 RM.DATA_TYPES.TEXT Package

CODE_PHRASE
terminology_id[1]:
TERMINOLOGY_ID
code_string[1]: String

DV_PARAGRAPH
 items

1..*
DV_TEXT
value[1]: String
hyperlink[0..1]: DV_URI
formatting[0..1]: String

DATA_VALUE

TEXT

TERM_MAPPING
match[1]: Character
purpose[0..1]: DV_CODED_TEXT

target 1

DV_CODED_TEXT

 mappings
0..*

 defining_code1

1
 language

1 charset
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 21 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

RM.DATA_TYPES.TEXT Package The openEHR Data Types Information Model
Rev 1.8
3. Terminology_Id=”100178” - a unique value in the accepted set of terminologies from an
authoritative source. These MUST be universally known.

The set of legal Terminology IDs will need to be tightly controlled by an authorative agency such as
HL7 or openEHR.

5.1.1.1 Narrative Text
Narrative text items are used in the EHR in a number of cases, including:

• values of structural attributes in the reference model;

• recording of subjective or imprecise patient responses, particularly quantities or dates not
deemed sufficiently precise to be represented using structured quantitative or date/time date
types;

• recording of narrative statements, e.g. visual observations;

• recording of tracts of prose, e.g. overall findings and conclusions, prognoses;

• recording of values which would normally be coded, but for which no code and/or no termi-
nology service is available.

While narrative text items themselves are not themselves coded, they may have code phrases associ-
ated with them, as described below under Mappings, and may be mixed within a paragraph with
coded items.

5.1.1.2 Terminological Entities
Textual entities available in a terminology service are used in the health record to enable processing,
from simple queries to decision support. Reasons for using terminology include:

• to guarantee interoperability of meaning. For instance, if the term “cold” is recorded in plain
text, it could be interpreted as “feeling cold”, “C.O.L.D” (chronic obstructive lung disease),
“rhinorrhoea”, “coryza” or “U.R.T.I. (upper respiriatory tract infection), among others. If,
however, it is coded from a terminology such as ICD10 or SNOMED-CT, any party reading
the data (including software) knows the intention, since the meaning of the code in the ter-
minology is unambiguous;

• to standardise textual renderings of terms and avoid informal shorthand. For example, prac-
titioners wanting to write “systolic blood pressure” write things like “systolic BP”, “systolic
bp”, “sys. BP.” and so on; use of coded terms ensures that such abbreviations are either
avoided, or associated with an unambiguous meaning;

• for unambiguous naming of problems, medications or diagnoses for support of knowledge-
based tools such as prescribing packages and other decision support applications;

• for standardised names of things in the record e.g. a heading of “Physical examination” or
an entry such as “Differential diagnosis”;

• for finite sets of values (“value sets”), e.g. Blood Group = ‘A|B|AB|O’;

• for classifying other data for the purpose of statistical studies, e.g. by putting ICD disease
group classifiers on actual disease names entered in health records.

A basic requirement for interoperability of text items, coded using terms (i.e. where the text is the
official rubric for the code), is that both the rubric and the code (or ‘code-phrase’) must be recorded,
to ensure the originally intended text is retained for receivers of EHR information who do not have
access to the same terminologies used at the origin (or indeed any terminology service at all). How-
ever, where a terminology service is available, the key can be used to unambiguously locate the string
Date of Issue: 09 Mar 2004 Page 22 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model RM.DATA_TYPES.TEXT Package
Rev 1.8
value of the term, and can also be used to find translations in other languages. (Note that these com-
ments do not apply to mappings, which are described below).

In modern terminologies, there are semantic networks of links emanating from most coded terms,
which classify them or relate them to other terms. Such links provide a means for decision support to
make inferences about specific things found in the record. For instance if the term “leukaemia” is
found, queries to the terminology service can be made in order to deduce that the patient has both a
“cancer” and a “disease of the immune system” (assuming leukaemia is classified under these more
general terms in the terminology).

This specification assumes the existence of a terminology service which is responsible for interrogat-
ing actual terminologies and performing validated coordination of terms, i.e. creating combinations
deemed valid by the underlying source terminology, potentially without even assigning a new code to
the result. All validated coordination is carried out inside the terminology service, and any “term”
made available by the service is already “coordinated” (one might now think of such terms as having
been “pre-coordinated” by the terminology service itself, even though they are not pre-coordinated
inside any given terminology). For example, the coordination “foot, left” (a shorthand way of writing
the relationship “foot has-laterality left”) could be created by the terminology service from the source
terms “foot”, “left” and “has-laterality” from a terminology such as SNOMED. Any such coordina-
tion must be valid within the source terminology, i.e. correspond to valid relationships defined
therein.

The class DV_CODED_TEXT described here captures the association of two things:

• the code phrase of a code phrase provided by the terminology service, recorded in the
defining_code attribute.

• the text rubric of the code phrase, recorded in the value attribute (inherited from DV_TEXT);

The class CODE_PHRASE records a key, in the form of arguments to some retrieval function in the
terminology service interface.

There are different semantics attached to different coordinations of terms. Two main categories of
coordination have been described in the literature: “qualification” and “modification”. A common
definition of the first is that “qualification narrows meaning” - i.e. creates a new term whose possible
real world instances are within the set denoted by the original root term. Modification on the other
hand changes the meaning of a root term. Various cases are described below under Meaning Modifi-
cation. Both coordination types are managed by the terminology service.

Coded terms may also be mapped to terms from other terminologies, which may be intended as equiv-
alents, classifiers, or something in between. The section below on Mappings deals with these.

5.1.2 Design
All atomic text items are either instances of the type DV_TEXT or of DV_CODED_TEXT. The former
allows the expression of text with optional formatting and hyperlinking. The latter connects the text
value to a key in the terminology service, with the implication that the key refers to a terminological
entity lexically and semantically identical to the text value.

The model of DV_CODED_TEXT is designed to capture the actual coded term chosen by the user or
software at runtime; it is implicitly assumed that this includes whichever synonym (term of equiva-
lent meaning from the same terminology) was chosen, for terminologies supporting synonyms, and
any coordination of underlying distinct terms. A DV_CODED_TEXT instance can only be used if the
final textual value chosen by the user is lexically identical to the rubric returned by the terminology
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 23 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

RM.DATA_TYPES.TEXT Package The openEHR Data Types Information Model
Rev 1.8
service for the key; if the user makes even the slightest change, the identity of rubric / key is lost, and
a mapping (see Mappings on page 26) should be used instead.

The type DV_TEXT should be used wherever a coded or non-coded text item is allowed, while the
type DV_CODED_TEXT should be used wherever a text item must be coded.

The type DV_PARAGRAPH allows larger tracts of text to be built up from lists of DV_TEXT instances,
i.e. instances of DV_TEXT and DV_CODED_TEXT, as illustrated in FIGURE 5.

5.1.3 Qualification
Qualification is the process of making a term more specific through the post-coordination of addi-
tional terms. It occurs when a terminology defines relationships between a primary term and other
terms that qualify the primary. For example a coordination using the term “bronchitis” which creates
a qualified term might be “acute bronchitis”; all real world instances of the latter are also instances of
the former.

5.1.4 Meaning Modification
Terms that change the meaning of other terms are often known as “modifiers”. The difference
between modification and qualification is that modifiers change the meaning so that the modifed term
as a whole does not refer to instances of the unmodified term. We describe below the particular types
of modifiers and how they are represented using the text data types.

5.1.4.1 Mode-changing Terms
One class of modifers is exemplified by the addition of words like “risk of”, “fear of”, “history of”
and so on. These are sometimes called mode-changing terms, since they change the “mode” of the
root term from the present to the past (“history of”), a potential future (“risk of”) or some other alter-
nate reality. Terms which are modified in this way should never be matched in queries searching for
the root term; for example, a query for “coronary diease” (of the patient) should not match “family
history of coronary disease”.

5.1.4.2 Context Sensitivity
There are many terms whose meaning is changed by the context in which they are stated, such as
within a certain kind of note or test result. Consider the following:

• a blood sugar level after a 75gm oral loading has a different meaning than a fasting blood
sugar;

• a systolic blood pressure in the pulmonary artery has a different meaning than a systemic
arterial blood pressure;

• “total hip replacement” in the context of a “planned procedure";

• “meningitis” in the context of a “differential diagnosis”.

FIGURE 5 A DV_PARAGRAPH

blah blah blah blah blah blah blah blah blah blah pneumonia, bronchial

terminology_id = SNOMED-CT(3.02)

 blah

visible text DV_TEXT DV_CODED_TEXT

code_string = nnnnnnn

DV_TEXT DV_TEX

defining_code

CODE_PHRASE

language = en-uk language = en-uk language = en-uk languag
Date of Issue: 09 Mar 2004 Page 24 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model RM.DATA_TYPES.TEXT Package
Rev 1.8
5.1.4.3 Negation
Negation is a special kind of mode change and has been a serious design challenge in the past,
because modifiers like “not” or “no” only make sense when attached to some terms, and create non-
sensical values or ambiguities by arbitrarily association with other terms.

5.1.4.4 Representation of Meaning-Modifying Terms
Rather than provide explicit features for representing modifier terms within DV_CODED_TEXT, the
general principle underlying representation of all post-coordinations other than qualifications, is that
a higher-level, archetyped structure such as an ENTRY (defined in the EHR RM), is a minimal indivis-
ible unit of information. Such higher-level entities can have internal structure, and it is possible (and
desirable) to achieve the effect of combinations of terms through this structure. In the case of ENTRY,
it will be via structuring of CLUSTER/ELEMENT objects. The general rule is: to obtain the full mean-
ing of any terms found in the record, all of the node names in any ENTRY (coded or not) must be con-
sidered from the root to the relevant leaf. Conversely, the “final” meaning of any term in the record
cannot be known in isolation from the rest of the terms in the structure.

Accordingly, the concept “family history of coronary disease” is represented as an ENTRY whose root
is named (for example) “subject family history”, and which includes further structure, which may be
in greater of lesser detail; the coded term “coronary disease” would appear somewhere in this struc-
ture. The actual structure is completely defined by appropriate archetypes. Contrary to some percep-
tions, there is no general way to represent concepts such as “family history of coronary disease”,
since it will vary depending on how much detail is recorded. Where some GPs routinely record just
the simplest form, others may record the details of which family members had heart problems and
exactly what they were.

The same approach is used for context-dependent terms. Archetypes defining contexts such as
“planned procedures” or “differential diagnosis” will use these terms as their root nodes; as a result,
the meaning of any term appearing below the root can only be understood by including the root. Once
again, the exact structures are completely dependent upon archetyping, and may be simple or quite
sophisticated.

Negations are more complex than might first be apparent and are best handled by good archetype
design. Terminologies might provide a term such as “No known allergies” which is helpful. But if
someone has an allergy of some sort, the medicolegal requirement might be to record that the person
has no known allergies to penicillin or another class of medication that is being prescribed. The often-
proposed approach of using a generic negation ‘modifier’ to deal with such issues results in further
problems. Consider the use of negation with liver - “no liver”, “no palpable liver”, “no liver disease”,
“no history of liver disease”, “no liver function”, “no liver function tests”. The meaning of negated
terms may be non-sensical and difficult to interpret.

A basic principle of dealing with negatives is to realise that most naïve suggested use cases are quite
ambiguous as stated. Does “no allergies” mean “no reported episode of allergy”, “no allergic reac-
tions ever”, “no known allergies to medication” or something else? Does it mean that these statements
are taken as given by the patient, or determined by tests? Like all medical phenomena, allergies must
be described in some detail for the EHR to be of any real use. Almost inevitably, this precludes the
use of negated terms. Since the actual information structure will be determined in advance by arche-
type designers, clinicians will almost never be in the situation of having to negate a term. However, if
the need does arise, it should be dealt with by a negative or quantitative answer, i.e. a value rather
than a name. For example, in any ENTRY describing current problems, the clinician may record the
name/value pair “allergies: NONE”. Here, “allergies” will be a DV_CODED_TEXT, and “NONE” will
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 25 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

RM.DATA_TYPES.TEXT Package The openEHR Data Types Information Model
Rev 1.8
be either a DV_CODED_TEXT or a DV_TEXT; the two will be associated by a containing object, such as
an instance of the ELEMENT class from the EHR RM.

5.1.5 Mappings
In a number of circumstances, both plain text and coded text items are mapped to terms from other
terminologies. In theory, this should never occur, since it means that relationships between terms
which should only be knowable in the knowledge base (in the form of the terminology service, or
something else) are being created and transmitted as part of EHR information, potentially invalidating
or overriding the knowledge base. Where mappings are required, the proper approach is to create the-
sauri within the knowledge environment, and map through them. Unfortunately, in some cases, activ-
ities in the real world do not respect the information/knowledge boundary, hence the model described
here includes an explicit mapping concept, which itself includes a “purpose” and a “match” indicator.
Matching corresponds to the categories described below.

5.1.5.1 Classification (Broader Terms)
Any text item, whether coded or not, may be classified with a coded term, for research, reporting and
decision support purposes. For example, a GP working in tropical Australia may wish to write “Ross
River infection”, and be working with ICD9, which does not contain this term (although ICD9-CM
does). He or she will use a plain text item, but will still be able to map it to an ICD9 classifier, such as
the code for “arbovirus infection NOS”. The same approach can be used for adding a classifying term
to a coded text item. The utility of classifier terms is various: they allow decision support to make
more powerful inferences; in situations where the available terminologies do not provide the classifi-
cation inbuilt, and where it is known that not all users of EHR data will have terminologies available.
In data terms, classification mapping can be visualised as illustrated in FIGURE 6.

Classifying mappings are represented by adding a term to the mappings list of the original term. Each
mapping is explicitly represented with an instance of TERM_MAPPING, which indicates both the term
being associated with the original text item, and a value of ‘>’ for the match attribute, which indicates

FIGURE 6 Plain Text and Coded Text with Classifier(s)

 blah blah Ross River infection blah blah blah

(rubric = arbovirus infection NOS)

terminology_id = ICD9

bronchial pneumonia blah blah

(rubric = viral pneumonia)

visible text (“what the clinician said”)

COORD-

DV_TEXT DV_CODED_TEXT

match = ‘>’
purpose = “epidemiology”

match = ’>’
purpose = “interoperability”

mappings

mappings
target

target

TERM_
MAPPING

TERM
INATED_

defining_code

code_string = 066.9

terminology_id = ICD9
code_string = 480

terminology_id = SNOMED-CT
code_string = 0000011

language = en-au language = en-au
charset = iso-latin-1charset = iso-latin-1

COORD-

TERM_
MAPPING

TERM
INATED_
Date of Issue: 09 Mar 2004 Page 26 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model RM.DATA_TYPES.TEXT Package
Rev 1.8
that the mapping is “broader”. The possible values of the match attribute are ‘>’ (broader), ‘<‘ (nar-
rower), and ‘=’ (equivalent); they are taken from the ISO standards 2788 (“Guide to Establishment
and development of monolingual thesauri”) and 5964 (“Guide to Establishment and development of
multilingual thesauri”).

5.1.5.2 Equivalents (Synonymous Terms)
Data from pathology laboratories has often been coded using a terminology local to the laboratory,
due to lack of or economic unfeasibility of using existing widespread terminologies for the job. How-
ever, some laboratories also supply a nearest equivalent code from a well-known terminology such as
LOINC, to enable the receiver of the data to process it in a more standard fashion. Here, “equiva-
lence” is taken to mean a term of the same meaning but from a different vocabulary.

Another instance where equivalent terms might be supplied is to effect the translation of terms across
specialist vocabularies such as nursing vocabularies when sharing EHRs across jurisdictions.

In theory, the cleanest way for senders and receivers of data coded with both a local and a more stand-
ard equivalent to deal with the mapping problem is for the originator of the local terminology to pro-
vide a complete thesaurus of translations into one or more recognised terminologies. However, in
practice, laboratories using the HL7 v2.x messaging standard usually encode a primary term and
equivalents with the HL7 CE data type, meaning that equivalents are included only with the term they
are used with. A similar pragmatic approach to mapping equivalent terms in the EHR is likely to be
used with the data types described here, and can be effected with the same mapping approach as for
classification.

A further situation in which text values - this time plain text - is mapped to equivalent terms is when
natural language processing is used to generate coded terms for existing free-text prose. The aim of
such processing is to detect word phrases and associate them with a coded term of the same meaning,
without obliterating the original text. In this case, an instance of DV_CODED_TEXT is associated with
an instance of DV_TEXT via the mappings attribute.

In all cases with equivalents, the value of the match attribute is ‘=’, indicating that the mapping is a
synonym.

5.1.5.3 More Specific Mappings (Narrower Terms)
Occasionally, there is a need to create a mapping to a term of narrower meaning than the original text
item. Circumstances in which this occurs include when a clinician wants to record a syndrome such as
“croup” or “influenza”, but the terminology does not contain these general terms, although it does
contain more specific terms, e.g. “viral laryngo-tracheitis” or “influenza type A”. Clearly the clinician
should be allowed to record what he/she wants (as plain text if necessary), but it should also be possi-
ble to add a mapping to the more precise term. For mappings to narrower terms, the value of the
match attribute is ‘<’.

5.1.5.4 The Unified Medical Language System (UMLS)
It has been argued in GEHR [14] that UMLS reference terms should also be supplied with occur-
rences of coded terms, in the form of the UMLS concept unique identifier, or “CUI”. UMLS is a way
of encoding terms developed at the National Library of Medicine in the United States, and consists of
a meta-thesaurus, in which terms from any extant term set (such as ICD, SNOMED, READ) can be
cross-referenced. UMLS CUIs could turn out to be extremely useful for decision support and report-
ing.

The proper use of UMLS is that terms from particular terminologies are passed to a UMLS interface
and a CUI + rubric received in response. However, the mapping approach described above could also
be used to map UMLS CUIs to existing text or terms in an EHR; in this case, a DV_CODED_TEXT is
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 27 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

RM.DATA_TYPES.TEXT Package The openEHR Data Types Information Model
Rev 1.8
constructed for each UMLS “term”, where the code is the CUI and the rubric is the text rendering of
the CUI (guaranteed unique in UMLS). The same approach can be used for any other thesaurus which
becomes available in the future.

5.1.5.5 Legacy Mapping Scenarios
In cases where legacy data has to be converted to openEHR-compliant data, and only codes are avail-
able, e.g. ICD or ICPC codes, the following approach is recommended:

• create a new DV_TEXT whose value is “(not available)”

• add a mapping to the DV_TEXT, with:

- purpose = “legacy conversion”
- match = “=”
- target = CODE_PHRASE object whose code_string and terminology_id are set to

correspond to the available code in the legacy data.

This expresses the reality that no text was ever recorded in the legacy system; rather a code was
recorded directly in the data field. In the converted data, this code is more correctly considered a map-
ping.

5.1.6 Language Translations
There does not appear to be any argument for recording language translations in the text data types
(i.e. other than the primary language version in use by the EHR server, which of course might not be
English). Firstly, there is no way to know which ones might be needed, since it is not known in
advance to whom the data might be sent; if it were included on this basis, one would presumably have
to include all available translations. Secondly, the availability of language translations is very mixed,
and in some cases quite limited. Even large terminologies like SNOMED support only a few lan-
guages, or translations for particular subsets. If extra translations were included with each term, the
selection would be quite arbitrary, and for small terminologies, there might be none. Lastly, the
intended use of language translation for coded terms is that it occur at the receiver’s end, via the use
of the same terminology in another language mode.

5.2 Class Descriptions

5.2.1 DV_TEXT Class

CLASS DV_TEXT

Purpose
A plain text item, which may contain any amount of legal characters arranged as
e.g. words, sentences etc (i.e. one DV_TEXT may be more than one word). Any
DV_TEXT may be “coded” by adding mappings to it.

Use
Fragments of text, whether coded or not are used on their own as values, or to
make up larger tracts of text which may be marked up in some way, eventually
going to make up paragraphs.

ISO 18308 STR 2.6, 2.9

Synapses The Text data value class can contain either plain text or a term taken from a ter-
minology system (coding scheme).
Date of Issue: 09 Mar 2004 Page 28 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model RM.DATA_TYPES.TEXT Package
Rev 1.8
HL7 Roughly equivalent to CWE (coded with extensions) - i.e. a text value which may
optionally be coded.

Inherit DATA_VALUE

Attributes Signature Meaning

value: String Displayable rendition of the item, regardless of its
underlying structure. For DV_CODED_TEXT, this is the
rubric of the complete term as provided by the termi-
nology service. No carriage returns, line feeds, or
other non-printing characters permitted.

mappings: List
<TERM_MAPPING>

terms from other terminologies most closely matching
this term, typically used where the originator (e.g.
pathology lab) of information uses a local terminology
but also supplies one or more equivalents from well-
known terminologies (e.g. LOINC).

formatting: String A format string of the form “name:value;
name:value...”, e.g. "font-weight : bold;
font-family : Arial; font-size : 12pt;".
Values taken from W3C CSS2 properties lists “back-
ground” and “font”.

hyperlink: DV_URI Optional link sitting behind a section of plain text or
coded term item.

language:
CODE_PHRASE

The localised language in which the value is written.
Coded from openEHR Code Set “languages”.

charset:
CODE_PHRASE

Name of character set in which value expressed.
Coded from openEHR Code Set “character sets”.

Invariants

Value_valid: value /= void and then not value.is_empty and then not
(value.has(CR) or value.has(LF))
Language_valid: language /= Void and then code_set(“languages”).has(lan-
guage)
charset_valid: charset /= Void and then code_set(“character sets”).has(charset)
Mappings_valid: mappings /= void implies not mappings.is_empty
Formatting_valid: formatting /= void implies not formatting.is_empty

CLASS DV_TEXT
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 29 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

RM.DATA_TYPES.TEXT Package The openEHR Data Types Information Model
Rev 1.8
5.2.2 TERM_MAPPING Class

CLASS TERM_MAPPING

Purpose

Represents a coded term mapped to a DV_TEXT, and the relative match of the tar-
get term with respect to the mapped item. Plain or coded text items may appear in
the EHR for which one or mappings in alternative terminologies are required.
Mappings are only used to enable computer processing, so they can only be
instances of DV_CODED_TEXT.

Use
Used for adding classification terms (e.g. adding ICD classifiers to SNOMED
descriptive terms), or mapping into equivalents in other terminologies (e.g.
across nursing vocabularies).

ISO 18308 STR 4.5

Attributes Signature Meaning

target: CODE_PHRASE The target term of the mapping.

match: Character The relative match of the target term with
respect to the mapped text item. Result
meanings:

• ‘>’: the mapping is to a broader term
e.g. orginal text = “arbovirus infec-
tion”, target = “viral infection”

• ‘=’: the mapping is to a (supposedly)
equivalent to the original item

• ‘<’: the mapping is to a narrower term.
e.g. original text = “diabetes”, mapping
= “diabetes mellitus”.

• ‘?’: the kind of mapping is unknown.

The first three values are taken from the
ISO standards 2788 (“Guide to Establish-
ment and development of monolingual the-
sauri”) and 5964 (“Guide to Establishment
and development of multilingual the-
sauri”).

purpose: DV_CODED_TEXT Purpose of the mapping e.g. “automated
data mining”, “billing”, “interoperability”

Functions Signature Meaning

narrower:Boolean
ensure
match = ‘<’ implies Result

The mapping is to a narrower term.
Date of Issue: 09 Mar 2004 Page 30 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model RM.DATA_TYPES.TEXT Package
Rev 1.8
5.2.3 CODE_PHRASE Class

equivalent:Boolean
ensure
match = ‘=’ implies Result

The mapping is to an equivalent term.

broader:Boolean
ensure
match = ‘>’ implies Result

The mapping is to a broader term.

unknown:Boolean
ensure
match = ‘?’ implies Result

The kind of mapping is unknown.

is_valid_match_code(c: Charac-
ter):Boolean
ensure
Result := c = ‘>’ or c = ‘=’ or c =
‘<’ or c = ‘?’

True if match valid.

Invariants

Target_exists: target /= Void
Purpose_valid: purpose /= Void implies terminol-
ogy(“openehr”).codes_for_group_name(“term mapping purpose”, “en”).has(pur-
pose.defining_code)
Match_valid: is_valid_match_code(match)

CLASS CODE_PHRASE

Purpose A fully coordinated (i.e. all “coordination” has been performed) term from a ter-
minology service (as distinct from a particular terminology).

ISO 18308 STR 4.2

Attributes Signature Meaning

terminology_id:
TERMINOLOGY_ID

Identifier of the distinct terminology from
which the code_string (or its elements) was
extracted.

code_string: String The key used by the terminology service to
identify a concept or coordination of concepts.
This string is most likely parsable inside the ter-
minology service, but nothing can be assumed
about its syntax outside that context.

Invariants Terminology_id_exists: terminology_id /= Void
Code_string_exists: code_string /= Void and then not code_string.is_empty

CLASS TERM_MAPPING
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 31 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

RM.DATA_TYPES.TEXT Package The openEHR Data Types Information Model
Rev 1.8
5.2.4 DV_CODED_TEXT Class

5.2.5 DV_PARAGRAPH Class

CLASS DV_CODED_TEXT

Purpose

A text item whose value must be the rubric from a controlled terminology, the
key (i.e. the ‘code’) of which is the defining_code attribute. In other words: a
DV_CODED_TEXT is a combination of a CODE_PHRASE (effectively a code) and
the rubric of that term, from a terminology service, in the language in which the
data was authored.

Use
Since DV_CODED_TEXT is a subtype of DV_TEXT, it can be used in place of it,
effectively allowing the type DV_TEXT to mean “a text item, which may option-
ally be coded”.

Misuse
If the intention is to represent a term code attached in some way to a fragment of
plain text, DV_CODED_TEXT should not be used; instead use a DV_TEXT and a
TERM_MAPPING to a CODE_PHRASE.

ISO 18308 STR 4.1, 4.2, 4.3

CEN Text

OMG HDTF COAS::CodedElement, LooselyCodedElement.

Synapses Text

GEHR G1_TERM_TEXT

HL7 ConceptDescriptor (CD), CodedValue (CV) and CodedSimple (CS)

Inherit DV_TEXT

Attributes Signature Meaning

defining_code:CODE_PHRASE The term which the ‘value’ attribute is the
textual rendition (i.e. rubric) of.

Invariants Definition_exists: defining_code /= Void

CLASS DV_PARAGRAPH

Purpose
A logical composite text value consisting of a series of DV_TEXTs, i.e. plain text
(optionally coded) potentially with simple formatting, to form a larger tract of
prose, which may be interpreted for display purposes as a paragraph.

Use DV_PARAGRAPH is the standard way for constructing longer text items in summa-
ries, reports and so on.

ISO 18308 STR 2.6
Date of Issue: 09 Mar 2004 Page 32 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model RM.DATA_TYPES.TEXT Package
Rev 1.8
FIGURE 7 illustrates the visual appearance of a typical DV_PARAGRAPH.

GEHR G1_PARAGRAPH

Inherit DATA_VALUE

Attributes Signature Meaning

items: List<DV_TEXT> Items making up the paragraph, each of
which is a text item (which may have its
own formatting, and/or have hyperlinks).

Invariants items_exists: items /= void and then not items.is_empty

CLASS DV_PARAGRAPH

FIGURE 7 PARAGRAPH visual structure

xxxxx xxxx xxx xxxxxxx xx xx xxxxxxx xxx xxxxxxxxx xxxx
xxxxxxxxxxxx xxxx xxx xxxxxx xxxxxxxxx xxxxxx xxxxx xxxxx xxxx
xxxxxx a xxxxxxx xxxx xxxxx xxxxx xxxxxxx xxxxxx x xxx
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 33 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

RM.DATA_TYPES.TEXT Package The openEHR Data Types Information Model
Rev 1.8
Date of Issue: 09 Mar 2004 Page 34 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model RM.DATA_TYPES.QUANTITY Package
Rev 1.8
6 RM.DATA_TYPES.QUANTITY Package

6.1 Overview
The Quantity package is illustrated in FIGURE 8.

FIGURE 8 RM.DATA_TYPES.QUANTITY Package

DATA_VALUE

DV_QUANTITY

numerator

QUANTITY

DATE_TIME

denominator

lower

upper

1

0..1

reference

0..*
_ranges

1 range
_RATIO

1

DV_WORLD_TIME

REFERENCE_RANGE
<T:DV_ORDERED>

meaning[1]: DV_TEXT

is_in_range(v:T): Boolean

DV_ORDINAL

value[1]: Integer

symbol[1]: DV_TEXT

limits[1]: REFERENCE_RANGE<..>

DV_QUANTIFIED

accuracy[1]: Real

accuracy_is_percent[1]: Boolean

magnitude: Numeric

infix “+” (...): like Current

infix “-” (...): like Current

diff_type: DV_QUANTIFIED

DV_QUANTITY

magnitude[1]: Double

precision[1]: Integer

units[1]: String

is_integral: Boolean

DV_CUSTOMARY_QUANTITY

units: String

DV_ORDERED

is_strictly_comparable_to(...):

Boolean

normal_range: REFERENCE...

infix ‘<’ (...): Boolean

is_simple: Boolean

is_normal: Boolean

DV_INTERVAL<T:DV_ORDERED>

DV_DURATION

INTERVAL<T>

DV_COUNT

magnitude[1]: Integer

DV_MEASURABLE

units[1]: String
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 35 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

RM.DATA_TYPES.QUANTITY Package The openEHR Data Types Information Model
Rev 1.8
6.1.1 Requirements
Types of quantities used in clinical medicine fall into a number of categories, as follows:

• dimensionless countable quantities, e.g. “number of doses: 2”, “number of previous preg-
nancies: 1”

• dimensioned quantities, e.g. “systolic BP: 110 mm[Hg]”, “height: 178 cm”, “rate of asthma
attacks: 7 /week”, “weight loss: 2.5 kg”

• quantity ratios, e.g. “1:128” (a titer), “250 mg / 500 ml (solute/solvent)”

• quantity ranges, e.g. “45kg - 65kg”

• symbolic ordinal values, e.g. “++”, “+++”, “mild”, “medium”, “severe”

• dates, times, durations

Aspects of quantities significant in their modelling include:

• units;

• precision of decimal representation;

• accuracy of measurement;

• reference ranges.

6.1.2 Overall Design
In order to make sense of these in a systematic way, a proper typology for quantities is needed. The
most basic characteristic of all values typically called “quantities” is that they are ordered, meaning
that the operator “<” (less-than) is defined between any two values in the domain. An ancestor class
for all quantities called DV_ORDERED is accordingly defined. This type is subtyped into ordinals and
true quantities, represented by the classes DV_ORDINAL and DV_QUANTIFIED respectively.
DV_ORDINAL represents data values whose exact numeric values are not known, and which use sym-
bolic renderings instead, such as “+”, “++”, “+++”, or “mild”, “medium”, “severe”. In contrast,
instances of DV_QUANTIFIED and all its subtypes have precise numeric values.

DV_QUANTIFIED itself introduces the concept of magnitude and accuracy, the latter of which is
explained in more detail below. Its two subtypes - the abstract DV_MEASURABLE - and the concrete
DV_COUNT reflect the two basic types of quantified value which exist. Measurable quantities are those
which measure an amount of a physical quantity, while countable quantities are used to count entities
in the real world.

There are two subtypes of DV_MEASURABLE. DV_QUANTITY is used to represent amounts of measur-
able things, and has a real number magnitude, precision and units. The units attribute contains the sci-
entific unit in a parsable form defined by the Unified Code for Units of Measure (UCUM) [8]. A valid
units string always implies a measured property, such as “force” or “pressure”. Unit strings can be
compared to determine if they measure the same property (e.g. “bar” and “kPa” are both units corre-
sponding to the property “pressure”), which enables the is_strictly_comparable_to function defined
on DV_ORDERED to be properly specified on DV_MEASURABLE.

It is important to note that while these semantics will allow comparison of e.g. two pressures
recorded in mbar and mm[Hg], or even two accelerations whose units are “m.s^-2” and “m/s^2”, they
provide no guarantee that this is a sensible thing to do in terms of clinical semantics: comparing a
blood pressure to an atmospheric pressure for example may or may not make any sense. It is not
within the scope of the Quantity package to express such semantics: this is up to application software
which uses Quantities found in specific places in the data.
Date of Issue: 09 Mar 2004 Page 36 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model RM.DATA_TYPES.QUANTITY Package
Rev 1.8
The subtype DV_CUSTOMARY_QUANTITY corresponds to quantities which are expressed in terms of
an arbitrary arrangement of values and units. Examples of the latter include imperial measurements of
weight and length (which are not modelled explicitly here, since they are either assumed to be
recorded in metric, or else in the smallest of the relevant units, such as inches or ounces), and the
time-related types in the “social/biological” time domain, which are recorded in year/month/day
and/or hour/minute/second format. Instances of any customary type are convertible to instances of
DV_QUANTITY. Time in finer time domains, e.g. chemical, atomic domains etc is recorded using
DV_QUANTITY, with units set to “s” (seconds). [To be completely correct, this model would include a
subclass DV_CUSTOMARY_QUANTITY for all time types, say DV_TIME_QUANTITY, whose units is set
to “time”. However, it is not yet clear that there are any other customary types required in clinical
medicine (e.g. imperial weights or lengths which need to be represented in parts rather than their
smallest possible unit).]

The type DV_COUNT has an integer magnitude and is used to record dimensionless naturally countable
things such as number of previous pregnancies, number of steps taken by a recovering stroke victim
and so on. There are no units or precision. Countable quantities can be used to create instances of
DV_QUANTITY, such as during a statistical study which average tobacco consumption over a time
period. Such a computation might cause the creation of DV_QUANTITY objects representing values
like {magnitude = 5.85, units = ‘/ week’}

Two final quantitative types are DV_QUANTITY_RATIO, which represents values which consist of
two DV_QUANTIFIED instances, and quantity ranges, which are formed from any two instances of
DV_ORDERED and are defined implicitly by the generic (template) type
DV_INTERVAL<DV_ORDERED>.

6.1.3 Ordinal Values
Ordinal values in clinical medicine deserve comment. Medicine is one domain in which symbols rep-
resenting relative magnitudes are commonly used, without exact values being known, or often, being
knowable. The main purpose is usually to classify patients into groups for which different decisions
might be made. Thus, while approximate ranges (technically speaking - “fuzzy intervals”) might be
stated (such as for a urinalysis), concrete values are not of interest, only categories are. Take for
example the characterisation of “pain” as being “mild”, “medium”, “severe”, or the reflex response to
tendon percussion as “-”, “+/-”, “+”, “++”, ”+++”, “++++”. There may be no way to scientifically
quantify such values because they reflect a subjective experience of the patient or informal judgement
by clinician.

Similarly, even though the symbolic values for haemolysed blood in a urinalysis have approximate
ranges stated for them (e.g. {“neg”, “trace” (10), “small” (<25), “moderate” (<80),
“large” (>200); (unit=cells/µl)}), these values are not usable in any way, and are there-
fore not represented in the model presented here. A possible argument for recording these values
sometimes put forward is that comparisons might want to be made between the rangees quoted by
two laboratories for the same symbol (e.g. “moderate”). There are a number of arguments against this.
Firstly, such comparisons are a poor attempt at “normalisation”, an activity which is the business of
pathologists, not EHR users. Secondly, the symbolic values are often arrived at by the tester making a
judgement of colour on a strip, which while an adequate (and cost-effective) approach for classifying,
is not a valid means of quantifying a value. Lastly, in most cases, if a quantified point value or range
is desired, or available, then it will be used - meaning that the data types DV_QUANTITY or
DV_INTERVAL<DV_QUANTITY> would be used rather than DV_ORDINAL.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 37 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

RM.DATA_TYPES.QUANTITY Package The openEHR Data Types Information Model
Rev 1.8
6.1.4 Accuracy and Uncertainty
Theoretically, “accuracy” would not be included in a model for QUANTIFIED values, because it is an
artifact of a measuring process and/or device, not of a quantity itself. For example, a weight of “82 kg
+/-5%” can be represented in two parts. The “82kg” is represented as a DV_QUANTITY, while the “+/-
5%” may be included in the protocol description of the weighing instrument (recorded in an ENTRY),
since this is where the error comes from. However, for practical purposes, for any measured quantity
for which accuracy was recorded, it is quite likely that the accuracy will be required in computations
on the quantity, especially for statistical population queries in which measurement error must be dis-
ambiguated from true correlation. It is therefore included as an attribute of DV_QUANTIFIED. If not
used, its value is 0.

The notion of “uncertainty” is understood as a subjective judgement made by the clinician, indicating
that he/she is not certain of a particular statement. It is not the same as accuracy: uncertainty may
apply to non-quantified values, such as subjective statements, and it is not an aspect of objective
measurement processes, but of human confidence. Where the uncertainty is due to subjective memory
e.g. “I think my grandfather was 56 when he died”, the uncertainty is simply recorded as another
value, along with the main data item being recorded.

6.1.5 Reference Ranges
Reference ranges are an important aspect of laboratory data. The general form of a reference range
found in a pathology result indicates what is considered the “normal” range for a measured value.
Examples of reference ranges:

• normal range for serum Na is 135 - 145 mmol/L.

• desirable total cholesterol: < 5.5 mmol/L (strictly this probably should be 2.0 - 5.5 mmol/L,
but is not usually quoted this way as low cholesterol is not considered a problem.)

Ranges can also be quoted for drug administrations, in which case they are usually thought of as the
“therapeutic” range. For example, the anticonvulsant drug Carbamazepine has a therapeutic range of
20 - 40 µMol/L. In some cases, there are multiple ranges associated with a drug, for example, Sali-
cylate has a therapeutic range of 1.0 - 2.5 mmol/L and a toxic range > 3.6 mmol/L

Another case in which multiple ranges may be stated is the administration recomendations for drugs
which depend on the particular patient state. For example, the therapeutic range of Cyclosporin (an
immunosuppresant) is a function of time post-transplant for the affected organ, e.g. kidney: < 6
months: 250 - 350 µg/L, > 6 months: 100 - 200 µg/L.

Yet another example of multiple ranges are those for blood IgG, IgA, IgM which vary significantly
with the age in months from birth.

Where there appear to be multiple ranges, the important question is: which range information is rele-
vant to the actual data being recorded for the patient? In theory, only the range corresponding to the
particular patient situation should be used, i.e. the range which applies after taking into account sex,
age, smoking status, “professional athlete”, organ transplanted, etc. In most cases, this is a single
“normal” range, or a pair of ranges, typically “therapeutic” and “critical”. However, practical factors
complicate things. Firstly, data is often supplied from pathology labs along with some or all of the
applicable reference ranges, even though only some could possibly apply. This is particularly the case
if the laboratory has no other data on the patient, and cannot evaluate which range applies. The
requirement for faithfulness of recording might be extended to reference data supplied by laborato-
ries, regardless of how irrelevant or arbitrarily chosen the reference data is, meaning that such data
has to be stored in the record anyway. Secondly, there may be circumstances in which physicians
want a number of reference ranges, even while knowing that only one range is applicable to the
Date of Issue: 09 Mar 2004 Page 38 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model RM.DATA_TYPES.QUANTITY Package
Rev 1.8
datum. Ranges above and below the relevant one might be useful to a physician wishing to determine
how far out of range the datum is.

The approach taken in the openEHR model is to provide the ability to add any number of named ref-
erence ranges to a DV_QUANTIFIED (i.e. date/time types and quantities), using the type
REFERENCE_RANGE.

If more complex reference data really needs to be included in the patient’s record (i.e. if it really is
patient-specific), there is nothing to prevent fully archetyped structures associated with the datum in
question being used to describe it.

6.1.6 Statistical Reference Data
To Be Continued:

6.2 Class Descriptions

6.2.1 DV_ORDERED Class

CLASS DV_ORDERED (abstract)

Purpose

Abstract class defining the concept of ordered values, which includes ordinals as
well as true quantities. It defines the functions ‘<’ and is_strictly_comparable_to,
the latter of which must evaluate to True for instances being compared with the
‘<’ function, or used as limits in the DV_INTERVAL<T> class.

Use

Data value types which are to be used as limits in the DV_INTERVAL<T> class
must inherit from this class, and implement the function
is_strictly_comparable_to to ensure that instances compare meaningfully. For
example, instances of DV_QUANTITY can only be compared if they measure the
same kind of physical quantity.

Abstract Signature Meaning

infix ‘<’ (other: like Current):
Boolean
require
is_strictly_comparable_to(other)

Tests if this item is less than other, which
must be of the same concrete type.

is_strictly_comparable_to (other: like
Current): Boolean

Test if two instances are strictly compa-
rable.

Inherit DATA_VALUE

Attributes Signature Meaning

reference_ranges: List
<REFERENCE_RANGE<like Current>>

optional tagged ranges for this value in
its particular measurement context

Functions Signature Meaning

is_normal: Boolean Value is in the normal range if there is
one, otherwise True.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 39 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

RM.DATA_TYPES.QUANTITY Package The openEHR Data Types Information Model
Rev 1.8
6.2.2 DV_INTERVAL<T : DV_ORDERED> Class

normal_range:
REFERENCE_RANGE<like Current>
require
reference_ranges /= Void
ensure
Result /= Void implies
reference_ranges.has(Result) and
then Result.meaning.value.
is_equal(“normal”)

If there are reference ranges, returns the
reference range whose meaning is “nor-
mal”

is_simple: Boolean True if this quantity has no reference
ranges, or accuracy.

Invariants

Reference_range_validity: reference_ranges /= Void implies not
reference_ranges.is_empty
Is_simple_validity: reference_ranges = Void implies is_simple
Normal_range_validity: has_normal_range implies (reference_ranges /= Void
and then reference_ranges.has(normal_range))

CLASS DV_INTERVAL<T : DV_ORDERED>

Purpose Generic class defining an interval (i.e. range) of a comparable type. An interval is
a contiguous subrange of a comparable base type.

Use

Used to define intervals of dates, times, quantities (whose units match) and so on.
The type parameter, T, must be a descendant of the type DV_ORDERED, which is
necessary (but not sufficient) for instances to be compared (strictly_comparable
is also needed).

Without the DV_INTERVAL class, quite a few more DV_ classes would be needed
to express logical intervals, namely interval versions of all the date/time classes,
and of quantity classes. Further, it allows the semantics of intervals to be stated in
one place unequivocally, including the conditions for strict comparison.

The basic semantics are derived from the class INTERVAL<T>, described in the
support RM.

ISO 18308 STR 3.13

CEN
Time Interval; also includes a measurement range data type but not the ability to
specify if minimum or maximum values are inclusive.

Synapses
QuantityRange + ability to specify if the range is inclusive or exclusive separately
of the maximum and minimum values.

GEHR G1_QUANTITY_RANGE

HL7 IVL<T:QTY>

CLASS DV_ORDERED (abstract)
Date of Issue: 09 Mar 2004 Page 40 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model RM.DATA_TYPES.QUANTITY Package
Rev 1.8
6.2.3 REFERENCE_RANGE<T:DV_ORDERED> Class

6.2.4 DV_ORDINAL Class

Inherit DATA_VALUE, INTERVAL<T>

Invariants Limits_consistent: (not upper_unbounded and not lower_unbounded) implies
(lower.is_strictly_comparable_to(upper) and lower <= upper)

CLASS REFERENCE_RANGE<T:DV_ORDERED>

Purpose
Defines a named range to be associated with any ORDERED datum. Each such
range is particular to the patient and context, e.g. sex, age, and any other factor
which affects ranges.

Use May be used to represent normal, therapeutic, dangerous, critical etc ranges.

ISO 18308 STR 3.13

Attributes Signature Meaning

meaning: DV_TEXT Term whose value indicates the mean-
ing of this range, e.g. “normal”, “criti-
cal”, “therapeutic” etc.

range: DV_INTERVAL<T> The data range for this meaning, e.g.
“critical” etc.

Functions Signature Meaning

is_in_range (val: T): Boolean Indicates if the value ‘val’ is inside the
range

Invariants

Meaning_exists: meaning /= Void
Range_exists: range /= Void
Range_is_simple: (range.lower_unbounded or else range.lower.is_simple) and
(range.upper_unbounded or else range.upper.is_simple)

CLASS DV_ORDINAL

Purpose
Models rankings and scores, e.g. pain, Apgar values, etc, where there is a)
implied ordering, b) no implication that the distance between each value is con-
stant, and c) the total number of values is finite.

Use

Used for recording any clinical datum which is customarily recorded using sym-
bolic values. Example: the results on a urinalysis strip, e.g. {neg, trace, +,
++, +++} are used for leucocytes, protein, nitrites etc; for non-haemolysed
blood {neg, trace, moderate}; for haemolysed blood {neg, trace,
small, moderate, large}.

CLASS DV_INTERVAL<T : DV_ORDERED>
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 41 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

RM.DATA_TYPES.QUANTITY Package The openEHR Data Types Information Model
Rev 1.8
6.2.5 DV_QUANTIFIED Class

ISO 18308 STR 3.2

HL7 Quantity (QTY)

Inherit DV_ORDERED

Attributes Signature Meaning

value: Integer ordinal position in enumeration of values.

symbol: DV_CODED_TEXT Coded textual representation of this value in
the enumeration, which may be strings made
from “+” symbols, or other enumerations of
terms such as “mild”, “moderate”, “severe”,
or even the same number series as the values,
e.g. “1”, “2”, “3”.

Functions Signature Meaning

limits: REFERENCE_RANGE
<like Current>

limits of the ordinal enumeration, to allow
comparison of an ordinal value to its limits.

infix ‘<’ (other: like Current):
Boolean
ensure
value < other.value implies
Result

True if types are the same and values com-
pare

is_strictly_comparable_to
(other: like Current): Boolean
ensure
symbol.is_comparable
(other.symbol) implies Result

True if symbols come from same vocabulary,
assuming the vocabulary is a subset or value
range, e.g. “urine:protein”.

Invariants

Value_valid: value > 0
Symbol_exists: symbol /= Void
Limits_valid: limits /= Void and then limits.meaning.is_equal(“limits”)
Reference_range_valid: reference_ranges /= Void and then
reference_ranges.has(limits)

CLASS DV_QUANTIFIED (abstract)

Purpose
Abstract class defining the concept of true quantified values, i.e. values which are
not only ordered, but which have a magnitude, and for which the addition and dif-
ference operations can be defined.

OMG HDTF COAS::Measurement.

CLASS DV_ORDINAL
Date of Issue: 09 Mar 2004 Page 42 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model RM.DATA_TYPES.QUANTITY Package
Rev 1.8
Synapses Attributes in the Quantity class for unit and accuracy (double plus units)

HL7 Quantity (QTY)

Inherit DV_ORDERED

Abstract Signature Meaning

magnitude: Numeric Numeric value of the quantity in canonical
(i.e. single value) form. Implemented as con-
stant, function or attribute in subtypes as
appropriate.

infix ‘+’ (other: diff_type): like
Current

Sum of this quantity and another whose for-
mal type must be the difference type of this
quantity.

infix ‘-’ (other: diff_type): like
Current

Difference of this quantity and another
whose formal type must be the difference
type of this quantity type.

diff_type: DV_QUANTIFIED Type of quantity which can be added or sub-
tracted to this quantity. Usually the same
type, but may be different as in the case of
dates and times.

Attributes Signature Meaning

accuracy: Real accuracy of measurement instrument or
method which applies to this specific
instance of DV_QUANTIFIED, expressed
either as a half-range percent value
(accuracy_is_percent = True) or a half-range
quantity. A value of 0 means that accuracy
was not recorded.

accuracy_is_percent: Boolean If True, indicates that when this object was
created, accuracy was recorded as a percent
value; if False, as an absolute quantity value.

Functions Signature Meaning

is_valid_percentage
(x: Numeric): Boolean

Test whether a number is a valid percentage

Invariants
Magnitude_exists: magnitude /= Void
Accuracy_validity: accuracy_is_percent implies is_valid_percentage(accuracy)

CLASS DV_QUANTIFIED (abstract)
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 43 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

RM.DATA_TYPES.QUANTITY Package The openEHR Data Types Information Model
Rev 1.8
6.2.6 DV_MEASURABLE Class

6.2.7 DV_QUANTITY Class

CLASS DV_MEASURABLE (abstract)

Purpose

Abstract class defining the concept of true quantified values, i.e. values which are
not only ordered, but whose magnitude is meaningful as well.

Units were inspired by the Unified Code for Units of Measure (UCUM), devel-
oped by Gunther Schadow and Clement J. McDonald of The Regenstrief Institute
[8].

CEN unit exists as an attribute of the measurement data value class.

OMG HDTF COAS::Measurement.

Synapses Attributes in the Quantity class for unit and accuracy (double plus units)

HL7 Quantity (QTY)

Inherit DV_QUANTIFIED

Abstract Signature Meaning

units: String Stringified units, expressed in UCUM unit
syntax, e.g. "kg/m2", “mm[Hg]", "ms-1",
"km/h". Implemented accordingly in sub-
types.

Invariants Units_valid: units /= void

CLASS DV_QUANTITY

Purpose Quantitified type representing “scientific” quantities, i.e. quantities expressed as a
single value and optional units.

Use Can also be used for time durations, where it is more convenient to treat these as
simply a number of seconds rather than days, months, years.

ISO 18308 STR 3.2 - 3.4

CEN Quantifiable Data Item; Measurement data value class.

OMG HDTF COAS::Numeric.

Synapses Quantity

GEHR G1_QUANTITY

HL7 PhysicalQuantity (PQ)
Date of Issue: 09 Mar 2004 Page 44 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model RM.DATA_TYPES.QUANTITY Package
Rev 1.8
6.2.8 DV_COUNT Class

Inherit DV_MEASURABLE

Attributes Signature Meaning

magnitude: Double numeric magnitude of the quantity.

units: String Attribute representing stringified units.

precision: Integer precision to which the value of the quantity
is expressed, in terms of number of significant
figures. The value 0 implies an integral quantity.

diff_type: DV_QUANTITY Difference type for DV_QUANTITY

Functions Signature Meaning

is_integral: Boolean True if precision = 0; quantity represents an
integral number.

prefix ‘-’: like Current Negated version of current object, such as used
for representing a difference, e.g. a weight loss.

+ is_strictly_comparable_to
(other: like Current):
Boolean
require
units_equivalent(units,
other.units)

Test if two instances are strictly comparable by
ensuring that the measured property is the same,
achieved using the Measurement service func-
tion units_equivalent.

Invariants Precision_valid: precision >= 0

CLASS DV_COUNT

Purpose Countable quantities.

Use
Used for countable types such as pregnancies and steps (taken by a physiotherapy
patient), number of cigarettes smoked in a day.

Misuse Not used for amounts of physical entities (which all have units)

ISO 18308 STR 3.2 - 3.4

HL7 INT

Inherit DV_QUANTIFIED

Attributes Signature Meaning

CLASS DV_QUANTITY
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 45 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

RM.DATA_TYPES.QUANTITY Package The openEHR Data Types Information Model
Rev 1.8
6.2.9 Units Syntax
The BNF syntax specification of the units string, adapted from [8] is as follows:

Parse Specification
units ::= ‘/’ exp_units

| units ‘.’ exp_units
| units ‘/’ exp_units
| exp_units

exp_units ::= unit_group exponent | unit_group

unit_group ::= PREFIX annot_unit
| annot_unit
| ‘(’ exp_units ‘)’
| factor

annot_unit ::= unit_name
| unit_name ‘{’ ANNOTATION ‘}’
| ‘{’ ANNOTATION ‘}’

factor ::= Integer

exponent ::= SIGN Integer | Integer

Lexical Specification
PREFIX ::= ‘Y’ |‘Z’ | ‘E’ | ‘P’ | ‘T’ | ‘G’ | ‘M’ | ‘k’ | ‘h’ | ‘da’

| ‘d’ | ‘c’ | ‘m’ | ‘µ’ | ‘n’ | ‘p’ | ‘f’ | ‘a’ | ‘z’ | ‘y’
UNIT_NAME ::= [a-zA-Z_%]+ ; from unit tables
ANNOTATION ::= [a-zA-Z’.]+ ; from unit tables
SUFFIX ::= [a-zA-Z0-9’_]+ ; from unit tables

SIGN ::= ‘+’ | ‘-’
Integer ::= [0-9]+

This proposal is comprehensive, covering all useful unit systems, including SI, various imperial, cus-
tomary mesaures, and some obscure measures, as well as clinically specific additions. Metric pre-
fixes, meaning-changing textual suffixes (e.g. “[Hg]” in “mm[Hg]”) and non-meaning-changing
annotations (e.g. “kg {total}”) are recognised. With this syntax, units can be simply expressed in
strings such as:

“kg/m^2”, “m.s^-1”, “km/h”, “mm[Hg]”

and so on.

magnitude: Integer numeric magnitude of the quantity

diff_type: DV_COUNT Difference type for DV_COUNT

Invariants

CLASS DV_COUNT
Date of Issue: 09 Mar 2004 Page 46 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model RM.DATA_TYPES.QUANTITY Package
Rev 1.8
6.2.10 DV_QUANTITY_RATIO Class

6.2.11 DV_CUSTOMARY_QUANTITY Class

CLASS DV_QUANTITY_RATIO

Purpose Models a ratio of quantities.

Use

Used for recording specified administration dosages (e.g. 5 mg / 100 ml), drug
amounts based on body weight (e.g. 1 tablet / 10 kg), and titers (e.g. 1:128).

Note that the units representation in single QUANTITYs caters for any ratio in
which the units are expressible in unitary (i.e. denominator = 1) form. Thus, a
QUANTITY_RATIO of “2 g / 250ml” could be expressed as a QUANTITY of “8
g/l”.

MisUse
Should not be used to represent things like blood pressure which are often written
using a ‘/’ character, giving the misleading impression that the item is a ratio,
when in fact it is a structured value. E.g. visual acuity “6/24” is not a ratio.

ISO 18308 STR 3.6

OMG HDTF COAS::Ratio.

Synapses Numeric class

GEHR G1_QUANTITY_RATIO

HL7 Ratio (RTO). In HL7, the RTO type is used only for ratios of reals or integers, and
does not seem to allow for ratios of dimensioned quantities.

Inherit DATA_VALUE

Attributes Signature Meaning

numerator: DV_QUANTIFIED numerator of ratio

denominator: DV_QUANTIFIED denominator of ratio

Invariants
Numerator_exists: numerator /= Void
Denominator_exists: denominator /= Void

CLASS DV_CUSTOMARY_QUANTITY (abstract)

Purpose Abstract parent class of quantity types which are expressed in a form other than
the standard scientific, i.e. one value, one unit form

Inherit DV_QUANTIFIED

Abstract Signature Meaning
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 47 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

RM.DATA_TYPES.QUANTITY Package The openEHR Data Types Information Model
Rev 1.8
to_quantity: DV_QUANTITY
ensure
result_exists: Result /= void

Function to convert a customary
quantity to a scientific one for com-
parison or other purposes.

Constant Signature Meaning

units: String Constant

Invariants Units_valid: units.is_equal(“s”)

CLASS DV_CUSTOMARY_QUANTITY (abstract)
Date of Issue: 09 Mar 2004 Page 48 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model RM.DATA_TYPES.QUANTITY.DATE_TIME Package
Rev 1.8
7 RM.DATA_TYPES.QUANTITY.DATE_TIME Package

7.1 Overview
The DATE_TIME package includes three absolute date/time concepts: DV_DATE, DV_TIME,
DV_DATE_TIME, a relative concept: DV_DURATION, and the concept of partial dates and times, via
DV_PARTIAL_DATE, DV_PARTIAL_TIME. The Date_time package is illustrated in FIGURE 9.

7.1.1 Design Basis
Date/time values are somewhat special in the realm of data types. They can be expressed in standard
Quantity form, i.e. as a number of seconds, or they can be expressed in their “customary” form, in
which the standard structure of {value, unit} and metric relationships between orders of magnitude do
not hold. The customary form is what we are used to using with date/time quantities which relate to
affairs in the social time domain, such as births, deaths, ages, and times and durations of events which
we remember; in these cases it is expressed using the familiar year/month/date/hour/minute/second
system, in which the relationships between each successive unit of time is non-metric. Scientific
observations, mostly at finer granularities of time, are usually expressed using the standard Quantity
form rather than the customary form.

In clinical medicine, both types are used ubiquitously, and there is a need to be able to process
date/time quantities both in their customary form, and in their scientific form. Consequently, the
openEHR model takes the approach that date/time quantities are a subtype of the class
DV_CUSTOMARY_QUANTITY, itself a kind of DV_QUANTIFIED. Each subtype can easily be converted
to the scientific DV_QUANTITY form, while DV_QUANTITYs can be converted to customary form if
an appropriate one exists.

FIGURE 9 RM.DATA_TYPES.QUANTITY.DATE_TIME Package

DATE_TIME

timezone

1
DV_WORLD_TIME DV_DURATION

days[1]: Integer

hours[1]: Integer

minutes[1]: Integer

seconds[1]: Integer

fractional_second[0..1]:

Double

magnitude: Integer

prefix ‘-’: like Current

DV_DATE_TIME

year[1]: Integer

month[1]: Integer

day[1]: Integer

hour[1]: Integer

minute[1]: Integer

second[1]: Integer

fractional_second[0..1]:

Double

magnitude: Integer

DV_DATE

year[1]: Integer

month[1]: Integer

day[1]: Integer

magnitude: Integer

DV_TIME

hour[1]: Integer

minute[1]: Integer

second[1]: Integer

fractional_second[0..1]: Double

magnitude: Integer

DV_PARTIAL_
DATE

month_known[1]:

Boolean

DV_PARTIAL_TIME

minute_known[1]: Boolean

DV_CUSTOMARY_QUANTITY
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 49 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

RM.DATA_TYPES.QUANTITY.DATE_TIME Package The openEHR Data Types Information Model
Rev 1.8
All date/time types in this specification fall into two broad groups: absolute and relative. Absolute
date and time classes all inherit from the abstract class DV_WORLD_TIME, i.e. values measuring time
in a geographically located real world context. Such date/times measure absolute time: thus real
world dates measure calendrical time, while real world times measure clock time from midnight.
Consequently, all must include timezone information, ensuring that all instances of such dates and
times are situated on the same timeline, notionally that which is experienced at longitude 0o.

The relative category contains only the concept DV_DURATION, which expresses elapsed time from
some arbitrary time point. DV_DURATION is used for expressing durations of clinical phenomena, dif-
ferences between two world times, and the size of the timezone offset of any world time.

7.1.2 Fuzzy and Incomplete Date/Times
Partial or uncertain date/times have to be catered for in clinical medicine. It is common for patients to
be unsure about dates and durations. Clearly, quite complex models for fuzzy date/times and uncer-
tainty are possible. The approach used here takes into account the known needs for representing par-
tially known date/time data, while balancing that with the need to avoid incomprehensibly complex
fuzzy types whose generality would really only apply to a tiny percent of difficult cases. Thus, the
basis for modelling incomplete date/times is as follows.

• The modelling problem relates only to date/time quantities that need to be computable. For
extremely imprecise date/times, if the clinician feels the need, s/he can record it as narrative
text.

• In practical clinical experience, it turns out that partial dates represent the majority of
incomplete date/times. For dates, one of the following rules applies to any instance:

- only the year is known
- only the year and month are known

If not even the year is known, then the date is obviously extremely approximate and it would
probably be unsafe to represent it computationally. However, if computatable representation
was needed in this case, the form DV_INTERVAL<DV_DATE> should be used. A pedantic
example which breaks these rules is someone who claims to be born on “a Monday at the
start of May in 1934” (i.e. day but not date unknown). Either the clinician determines what
date the first Monday in May 1934 actually was and record that (assuming the patient’s way
of accurately remembering just happens to be via day rather than date), or else records a
partial date of the form “??/05/1934” if they determine that the patient really is unsure.

• Sometimes incomplete times are recorded, e.g.:

- by instruments which only generate hh:mm values (i.e. no seconds);
- by patients who report approximate times of events;
- by clinicians who use approximate times in administrations, e.g. “take insulin at

8am” really means something like 8am +/- 30 mins.

• A function should be provided giving applications easy access to a
DV_INTERVAL<DV_DATE> enclosing the maximum range which could be implied by the
originally stated date. Similarly for partial times.

• For imprecise durations, an interval should be used, i.e. DV_INTERVAL<DV_DURATION>. In
this way durations like “2 - 3 hrs” can be represented, and still be computable.

• To satisfy the faithfulness requirement for health record recording it is always possible to
record the narrative form of the datum provided by the patient as well as the formal form.
Date of Issue: 09 Mar 2004 Page 50 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model RM.DATA_TYPES.QUANTITY.DATE_TIME Package
Rev 1.8
Based on the above considerations, the requirements for partial types needed are satisfied by the
classes DV_PARTIAL_DATE and DV_PARTIAL_TIME.

7.1.3 Calendar
A comment on calendars is in order. In this specification, the Gregorian calendar is assumed in all
date types. Initially this may seem like a culturally insensitive approach, but in fact it makes sense in
computational terms, for both users of the Gregorian calendar and any other calendars, e.g. Julian,
Islamic, Baha’i, etc.

Arguments against allowing dates and date/times to be from any calendar include the following:

• Almost all dates on computer systems, including in regions such as the Indian sub-continent
and the middle east, where alternate calendars are in use, are in the Gregorian system. This
is likely to be the case for some time, and may always be the case, regardless of the contin-
ued use of other calendars for religious or other purposes (outside of health);

• If a calendar indicator were used in date quantities, all software, to be correct, would have to
check the value to verify that it is in the expected calendar system, and to do something spe-
cial if it is not - an added cost which is a possible source of bugs and which would rarely be
used. The reality is that most software produced in the western world, India etc (possibly
excepting open source software) would automatically assume the Gregorian calendar, and
would be in error if ever it did receive EHR data containing dates from alternate calendars.

• If/when other calendars are used in EHR or related systems, the users of those calendars will
be aware of it, and include the appropriate conversion logic between Gregorian dates and
their own, limiting the extra software work and quality issues to those users who actually
need alternate calendars. If EHRs from such places are sent to a health care facility where
Gregorian is the default, nothing special is needed to ensure that those records will contain
dates comprehensible to the receiver.

The strategy is effectively that users requiring non-Gregorian dates in EHR and other health systems
should include their own conversion code to and from Gregorian dates. This is no different from the
same requirement for any particular group of users to include special software relating to particular
kinds of user interfaces, language processing or other local/regional/cultural differences.

Algorithms for conversion between the Egyptian, Armenian, Khwarizmian, Persian, Ethiopian, Cop-
tic, Republican, Macedonian, Syrian, Julian Roman, Gregorian, Islamic A, Islamic B, Baha’i and
Saka calendars are described by Richards [7] and are based on the work of D. A. Hatcher (1986).

7.1.4 Representation
The classes described here define computational semantics, and do not in themselves define represen-
tation in particular implementation technologies. When a sharable, external representation has to be
defined, such as in XML-schema or any other data format, ISO 8601 format is used. This is implied
by the use of this standard for the as_string attribute of all date/time types here.

7.2 Definitions
The following symbolic definitions are used in the classes below:

• Seconds_in_minute: Integer = 60

• Minutes_in_hour: Integer = 60

• Hours_in_day: Integer = 24

• Days_in_year: Integer = 365
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 51 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

RM.DATA_TYPES.QUANTITY.DATE_TIME Package The openEHR Data Types Information Model
Rev 1.8
• Days_in_week: Integer = 7

• Months_in_year: Integer = 12

• Middle_second_in_minute:Integer = 30

• Middle_minute_in_hour:Integer = 30

• Middle_day_in_month: Integer = 15

• Middle_month_in_year: Integer = 6

• Last_day_of_middle_month: Integer is 30

• Min_timezone: DV_DURATION; Min_timezone.as_string = “-14:00”

• Max_timezone: DV_DURATION; Max_timezone.as_string = “+10:00”

Note that the timezone limits are set by where the international dateline is. Thus, time in New Zealand
is quoted using +13:00, not -11:00.

7.3 Class Descriptions

7.3.1 DV_WORLD_TIME Class

7.3.2 DV_DATE Class

CLASS DV_WORLD_TIME (abstract)

Purpose Abstract concept of time on the real world timeline. All dates assumed to be in
the Gregorian calendar.

Use Used for recording dates and/or times in real world time.

Inherit DV_CUSTOMARY_QUANTITY

Attributes Signature Meaning

timezone: DV_DURATION offset from Universal Coordinated Time, in
the range -1200 - +1200 (note that this can
affect the date even if no time is recorded).

Invariants timezone_valid: timezone /= Void and then (timezone >= Min_timezone and
timezone <= Max_timezone)

CLASS DV_DATE

Purpose Represents an absolute point in time, as measured on the Gregorian calendar, and
specified only to the day.

Use Used for recording dates in real world time.

ISO 18308 STR 3.7

CEN TOCD choice Quantifiable Observation Data Item
Date of Issue: 09 Mar 2004 Page 52 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model RM.DATA_TYPES.QUANTITY.DATE_TIME Package
Rev 1.8
7.3.3 DV_TIME Class

Synapses DTValue attribute of DateTime class (this does not distinguish the representation
of dates and of times)

GEHR G1_DATE

HL7
PointInTime (TS). Note that this type simply measures a number of seconds
since an epoch, with a timezone. These values are convertable to y/m/d form via
the calendar attribute of TS.

Inherit DV_CUSTOMARY_QUANTITY

Attributes Signature Meaning

year: Integer year

month: Integer month in year

day: Integer day in month

diff_type: DV_DURATION Difference type for DV_DATE

Functions Signature Meaning

is_valid_date(y, m, d:Integer):
Boolean
ensure
-- complex correctness condition

date is valid in Gregorian calendar

magnitude: Integer numeric value of the date as seconds since
the calendar origin point 1/1/0001

to_quantity: DV_QUANTITY
ensure
Result.units.is_equal(“d”)

Convert to a number of days (the unit “d” is
an ISO1000 unit).

as_string: String Result = “yyyy-MM-dd”, following ISO
8601 (see
http://www.cl.cam.ac.uk/~mgk25/iso-

time.html)

Invariants Validity: is_valid_date(year, month, day)

CLASS DV_TIME

Purpose Represents an absolute point in time from an origin usually interpreted as mean-
ing the start of the current day, specified to the second.

CLASS DV_DATE
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 53 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

http://www.cl.cam.ac.uk/~mgk25/iso-time.html
http://www.cl.cam.ac.uk/~mgk25/iso-time.html

RM.DATA_TYPES.QUANTITY.DATE_TIME Package The openEHR Data Types Information Model
Rev 1.8
Use Used for recording real world times, rather than scientifically measured fine
amounts of time.

ISO 18308 STR 3.7, 3.10

CEN TOCD choice Quantifiable Observation Data Item

Synapses DTValue attribute of DateTime class (this does not distinguish the representation
of dates and of times)

GEHR G1_TIME

HL7
PointInTime (TS). Note that this type simply measures a number of seconds since
an epoch. These values are convertable to ymd form via the calendar attribute of
TS.

Inherit DV_WORLD_TIME

Attributes Signature Meaning

hour: Integer hour

minute: Integer minute in hour

second: Integer second in minute

fractional_second: Double fractional seconds

diff_type: DV_DURATION Difference type for DV_TIME

Functions Signature Meaning

is_valid_time (h, m, s:Inte-
ger): Boolean
ensure
Result implies
(0 >= h < Hours_in_day) and
(0 >= m < Minutes_in_hour) and
(0 >= s < Seconds_in_minute)

time is valid within 24h/60min/60sec system
of time

to_quantity: DV_QUANTITY
ensure
Result.units.is_equal(“s”)

Convert to a number of seconds (the unit “s”
is a base SI unit).

magnitude: Double numeric value of the time as seconds since
the start of day

CLASS DV_TIME
Date of Issue: 09 Mar 2004 Page 54 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model RM.DATA_TYPES.QUANTITY.DATE_TIME Package
Rev 1.8
7.3.4 DV_DATE_TIME Class

as_string: String Result = “hh:mm:ssZ”, following ISO 8601
(see
http://www.cl.cam.ac.uk/~mgk25/iso-

time.html). ‘Z’ stands for either the literal
‘Z’ meaning “zero medidian”, i.e. Green-
wich, or else a duration of the form “+/-
hhmm”, e.g. “+1000”.

Invariants Validity: is_valid_time(hour, minute, second)
Fractional_second_valid: fractional_second >=0 and fractional_second < 1

CLASS DV_DATE_TIME

Purpose Represents an absolute point in time, specified to the second. In canonical form,

Use Used for recording a precise point in real world time.

ISO 18308 STR 3.7, 3.10

CEN TOCD choice Quantifiable Observation Data Item

OMG HDTF COAS::DateTime

Synapses DTValue attribute of DateTime class (this does not distinguish the representation
of dates and of times)

GEHR G1_DATE_TIME

HL7
PointInTime (TS). Note that this type simply measures a number of seconds since
an epoch, with a timezone. These values are convertable to y/m/d form via the
calendar attribute of TS.

Inherit DV_WORLD_TIME

Attributes Signature Meaning

year: Integer year

month: Integer month in year

day: Integer day in month

hour: Integer hour in day

minute: Integer minute in hour

second: Integer second in minute

CLASS DV_TIME
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 55 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

http://www.cl.cam.ac.uk/~mgk25/iso-time.html
http://www.cl.cam.ac.uk/~mgk25/iso-time.html

RM.DATA_TYPES.QUANTITY.DATE_TIME Package The openEHR Data Types Information Model
Rev 1.8
7.3.5 DV_DURATION Class

fractional_second: Double fractional seconds

diff_type: DV_DURATION Difference type for DV_DATE_TIME

Functions Signature Meaning

is_valid_date_time(y, m, d, h,
mi, s:Integer): Boolean

date/time is valid within Gregorian calendar
and within 24h/60min/60sec system of time

magnitude: Double numeric value of the date/time as days since
the calendar origin point

to_quantity: DV_QUANTITY
ensure
Result.units.is_equal(“d”)

Convert to a number of days (the unit “d” is
an ISO1000 unit).

as_string: String
-- Result has appropriate form....

Result = yyyy-MM-dd hh:mm:ssZ, follow-
ing ISO 8601 (see
http://www.cl.cam.ac.uk/~mgk25/iso-

time.html). ‘Z’ stands for either the literal
‘Z’ meaning “zero medidian”, i.e. Green-
wich, or else a duration of the form “+/-
hhmm”, e.g. “+1000”.

Invariants validity: is_valid_date_time(year, month, day, hour, minute, second)
Fractional_second_valid: fractional_second >=0 and fractional_second < 1

CLASS DV_DURATION

Purpose
Represents a period of time with respect to a notional point in time, which is not
specified. A sign may be used to indicate the duration is “backwards” in time
rather than forwards.

Use

Used for recording the duration of something in the real world, particularly when
there is a need a) to represent the duration in customary format, i.e. days, hours,
minutes etc, and b) if it will be used in computational operations with date/time
quantities, i.e. additions, subtractions etc.

MisUse Durations cannot be used to represent points in time, or intervals of time.

ISO 18308 STR 3.10

CEN Time Interval or Date Range or text description (pt 4)

GEHR G1_DATE_TIME_DURATION

HL7
Interval of Point in Time, IVL<TS>. The width attribute provides the duration.
IVL<TS> thus models an anchored duration.

CLASS DV_DATE_TIME
Date of Issue: 09 Mar 2004 Page 56 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

http://www.cl.cam.ac.uk/~mgk25/iso-time.html
http://www.cl.cam.ac.uk/~mgk25/iso-time.html

The openEHR Data Types Information Model RM.DATA_TYPES.QUANTITY.DATE_TIME Package
Rev 1.8
7.3.6 DV_PARTIAL_DATE Class

Inherit DV_CUSTOMARY_QUANTITY

Attributes Signature Meaning

days: Integer number of 24 hour days

hours: Integer number of 60 minute hours

minutes: Integer number of 60 second minutes

seconds: Integer number of seconds

fractional_second: Double fractional seconds

diff_type: DV_DURATION Difference type for DV_DURATION

Functions Signature Meaning

is_valid_duration(d, h, m,
s:Integer): Boolean

time is valid duration within
24h/60min/60sec system of time

prefix ‘-’: like Current Negated copy of current object

magnitude: Double numeric value of the duration as seconds

to_quantity: DV_QUANTITY
ensure
Result.units = “s”

Convert to a number of seconds (the unit “s”
is an ISO base unit).

as_string: String Result = following ISO 8601, starts with "P",
and is followed by a list of periods, each
appended by a single letter designator: "D"
for days, "H" for hours, "M" for minutes, and
"S" for seconds.

Invariants
Validity: is_valid_duration(days, hours, minutes, seconds)
Fractional_second_valid: fractional_second >=0.0 and fractional_second < 1.0

CLASS DV_PARTIAL_DATE

Purpose
Represents a partially known date. All partial dates have an unknown day, by def-
inition, else they would be represented as normal dates. The month_known flag
indicates whether the month is also unknown.

Use Used for approximate birth dates, dates of death, etc.

ISO 18308 STR 3.8

CLASS DV_DURATION
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 57 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

RM.DATA_TYPES.QUANTITY.DATE_TIME Package The openEHR Data Types Information Model
Rev 1.8
7.3.7 DV_PARTIAL_TIME Class

Synapses FromDate attribute of DateTime class (this does not distinguish the representa-
tion of dates and of times)

Inherit DV_DATE

Attributes Signature Meaning

month_known: Boolean Indicates whether month in year is
known. If so, the date is of the form
y/m/?, if not, it is of the form y/?/?

Functions Signature Meaning

enclosing_interval: Inter-
val<DV_DATE>

Enclosing date range implied by this
partial date.

magnitude: Integer canonical value of
enclosing_interval.midpoint.

as_string: String
ensure
-- Result has form “yyyy-MM-??”, or
“yyyy-??-??”

Result = follows ISO 8601

Invariants

Enclosing_interval: month_known implies enclosing_interval.lower.day = 1 and
enclosing_interval.upper.day = days_in_month(month, year) and not
month_known implies enclosing_interval.lower.month = 1 and
enclosing_interval.upper.month = Months_in_year and
enclosing_interval.lower.day = 1 and enclosing_interval.upper.day =
days_in_month(Months_in_year, year)

CLASS DV_PARTIAL_TIME

Purpose
Represents a partially known time. All partial time have an unknown second, by
definition, else they would be represented as normal times. The minute_known
flag indicates whether the minute is also unknown.

Use Used for approximate times of events and substance administrations.

ISO 18308 STR 3.8

Synapses FromTime attribute of DateTime class (this does not distinguish the representa-
tion of dates and of times)

Inherit DV_TIME

Attributes Signature Meaning

CLASS DV_PARTIAL_DATE
Date of Issue: 09 Mar 2004 Page 58 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model RM.DATA_TYPES.QUANTITY.DATE_TIME Package
Rev 1.8
minute_known: Boolean Indicates whether minute is known. If
so, the time is of the form h/m/?, if
not, it is of the form h/?/?

Functions Signature Meaning

enclosing_interval: INTER-
VAL<DV_TIME>

Enclosing time interval implied by
this partial time.

magnitude: Integer canonical value of
enclosing_interval.midpoint.

as_string: String
-- Result has form “hh:mm:??”, or
“hh:??:??”

Result = follows ISO 8601

Invariants

Enclosing_interval:
minute_known implies enclosing_interval.lower.second = 1 and
enclosing_interval.upper.second = Seconds_in_minute and
not minute_known implies enclosing_interval.lower.minute = 1 and
enclosing_interval.upper.minute = Minutes_in_hour and
enclosing_interval.lower.second = 1 and enclosing_interval.upper.second =
Seconds_in_minute

CLASS DV_PARTIAL_TIME
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 59 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

RM.DATA_TYPES.QUANTITY.DATE_TIME Package The openEHR Data Types Information Model
Rev 1.8
Date of Issue: 09 Mar 2004 Page 60 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model RM.DATA_TYPES.TIME_SPECIFICATION Package
Rev 1.8
8 RM.DATA_TYPES.TIME_SPECIFICATION Package

8.1 Overview
One of the difficulties with time is expressing future times, since potential occurrences, durations,
repetitions cannot be expressed in the same way as actual time. Complicating the problem is the fact
that humans tend to use very customary (i.e. calandar-anchored) ways of specifying time, such as
“every second Tuesday”, or “ the first Sunday of the month”. In clinical medicine, future time is most
commonly used to express when medications or other therapies are intended to take place. They are
often anchored to the calendar, and can easily include repetitions. Because time specification is about
potentiality rather than actuality, it needs its own types. These are illustrated in FIGURE 10.

As with other time types, there are both simple and complex cases to consider. One of the most com-
mon examples of time in the future is the timing for drug administrations, e.g. “once every four
hours”. This could be represented as a simple periodic specification, consisting of a start point in
time, a period, and a number of repetitions. The specification for taking blood sugar levels during a
glucose test could be represented as a simple aperiodic series, e.g. “.5hr, 1hr, 2hr”. However, even
common specifications for prescriptions e.g. “three times a day for seven days” start to become quite
complex, for example, because “three times a day” might not mean literally 8 hours apart.

Some of the factors to consider in timing specifications are:

• period of repetition

• duration of activity being specified

• possible alignment to the calendar, e.g. “every 5th of the month”

• possible alignment to real world events e.g. “after meals”

• fuzziness

TIME_SPECIFICATION

FIGURE 10 RM.DATA_TYPES.TIME_SPECIFICATION Package

DATA_VALUE

DV_TIME_SPECIFICATION

value[1]: DV_PARSABLE

calendar_alignment: String

event_alignment: String

institution_specified: Boolean

DV_GENERAL_TIME_
SPECIFICATION

calendar_alignment: String

event_alignment: String

institution_specified: Boolean

DV_PERIODIC_TIME_
SPECIFICATION

period: DV_DURATION

calendar_alignment: String

event_alignment: String

institution_specified: Boolean
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 61 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

RM.DATA_TYPES.TIME_SPECIFICATION Package The openEHR Data Types Information Model
Rev 1.8
Because time is inherently “messy” (months do not all have the same number of days, leap years
change the number of days in some years etc), and because the relationship we have with time can
also be arbitrary (e.g. anchored to mealtimes etc), specifying linguistically obvious specifications for-
mally is quite challenging.

8.1.1 The HL7 / ISO 8601 Approach
The HL7 version 3 data types for time specification appear to allow for all of the required possibili-
ties. The syntax is based on the ISO 8601 standard [9]. It provides types which express:

• Periodic intervals (HL7v3 - PIVL<T:TS>) - allows period, duration, and calendar linking to
be specified.

• Event-linked periodic intervals (HL7v3 - EIVL<T:TS>) - allows PIVLs to be linked to real-
world events like meals.

• General timing specification (HL7v3 - GTS) - allows any time specification to be expressed,
using a syntax which is equivalet to a series of IVL<TS> (i.e. intervals of DATE_TIME).

The HL7 syntax for time specification is encapsulated in equivalent openEHR types.

8.2 Class Descriptions

8.2.1 DV_TIME_SPECIFICATION Class

CLASS DV_TIME_SPECIFICATION (abstract)

Purpose
This is an abstract class of which all timing specifications are specialisations.
Specifies points in time, possibly linked to the calendar, or a real world repeating
event, such as “breakfast”.

ISO 18308 STR 3.9

Inherit DATA_VALUE

Attributes Signature Meaning

value: DV_PARSABLE the specification, in the HL7v3 syntax
for PIVL or EIVL types. See below.

Abstract Signature Meaning

calendar_alignment: String Indicates what prototypical point in
the calendar the specification is
aligned to, e.g. “5th of the month”.
Empty if not aligned. Extracted from
the ‘value’ attribute.

event_alignment: String Indicates what real-world event the
specification is aligned to if any.
Extracted from the ‘value’ attribute.
Date of Issue: 09 Mar 2004 Page 62 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model RM.DATA_TYPES.TIME_SPECIFICATION Package
Rev 1.8
8.2.2 DV_PERIODIC_TIME_SPECIFICATION Class

8.2.2.1 Phase-linked Time Specification Syntax
The syntactic form of phase-linked periodic time specifications (derived from the PIVL<T> spec
HL7v3 ballot) is as follows.

“[” interval “]” “/” “(” difference “)” [“@” alignment] [“IST”]

institution_specified: Boolean Indicates if the specification is aligned
with institution schedules, e.g. a hos-
pital nursing changeover or meal serv-
ing times. Extracted from the ‘value’
attribute.

Invariant Value_valid: value /= Void

CLASS DV_PERIODIC_TIME_SPECIFICATION

Purpose
Specifies periodic points in time, linked to the calendar (phase-linked), or a real
world repeating event, such as “breakfast” (event-linked). Based on the HL7v3
data types PIVL<T> and EIVL<T>.

Use Used in therapeutic prescriptions, expressed as INSTRUCTIONs in the openEHR
model.

ISO 18308 STR 3.9

CEN The Duration data value class provides for the specification of time intervals, and
also for a simple string description of the periodicity.

HL7 PIVL<T>, EIVL<T>

Inherit DV_TIME_SPECIFICATION

Functions Signature Meaning

period: DV_DURATION
ensure
Result /= Void

The period of the repetition, computa-
tionally derived from the syntax repre-
sentation. Extracted from the ‘value’
attribute.

calendar_alignment: String Calendar alignment extracted from
value.

event_alignment: String Event alignment extracted from value.

institution_specified: Boolean Extracted from value.

Invariant
Value_valid: value.formalism.is_equal(“HL7:PIVL”) or value.formal-
ism.is_equal(“HL7:EIVL”)

CLASS DV_TIME_SPECIFICATION (abstract)
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 63 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

RM.DATA_TYPES.TIME_SPECIFICATION Package The openEHR Data Types Information Model
Rev 1.8
Examples include:

• [200004181100;200004181110]/(7d)@DW = every Tuesday from 11:00 to 11:10 AM.

• [200004181100;200004181110]/(1mo)@DM" = every 18th of the month 11:00 to
11:10 AM.

A parse specification is as follows:

phase_linked_time_spec: pure_phase_linked_time_spec |
pure_phase_linked_time_spec “IST”

pure_phase_linked_time_spec: phase |
phase “@” alignment

phase: interval “/” “(” difference “)”

alignment: “DW” | etc /* terms from “HL7::CalendarCycle” domain */

difference: /* ISO 8601 for time difference */

interval: “[” interval_spec “]”

interval_spec: “;” |
“;” date_time |
date_time “;” date_time |
date_time “;”

date_time: /* ISO 8601 for date/time string yyyymmdd[hh[mm[ss]]] */

8.2.2.2 Event-linked Periodic Time Specification Syntax
Examples of event-linked periodic time specifications include:

• "PC+[1h;1h]" = one hour after meal

• "HS-[50min;1h]" = one hour before bedtime for 10 minutes

The following parse specification defines the syntax for event-related periodic time specifications.

event_linked_time_spec: event |
event offset

event: “AC” | “ACD” | etc /* HL7 domain “HL7::TimingEvent” */

offset: "+" dur_interval |
"-" dur_interval

dur_interval: /* ISO 8601 for duration interval */

8.2.3 DV_GENERAL_TIME_SPECIFICATION Class

CLASS DV_GENERAL_TIME_SPECIFICATION

Purpose Specifies points in time in a general syntax. Based on the HL7v3 GTS data type.

Use

ISO 18308 STR 3.9
Date of Issue: 09 Mar 2004 Page 64 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model RM.DATA_TYPES.TIME_SPECIFICATION Package
Rev 1.8
8.2.3.1 General Time Specification Syntax
The class is the same structurally as the DV_TIME_SPECIFICATION parent. The syntax is the HL7
GTS syntax, defined by the following parse specification:

general_time_spec: symbol |
union |
exclusion

union : intersection ";" union |
intersection

exclusion : exclusion "\" intersection

intersection : factor intersection |
factor

hull : factor ".." hull |
factor

factor :
interval |
phase_linked_time_spec |
event_linked_time_spec |
"(" general_time_spec ")"

CEN The Duration data value class provides for the specification of time intervals, and
also for a simple string description of the periodicity.

HL7 GTS

Inherit DV_TIME_SPECIFICATION

Functions Signature Meaning

calendar_alignment: String Calendar alignment extracted from
value.

event_alignment: String Event alignment extracted from value.

institution_specified: Boolean Extracted from value.

Invariant Value_valid: value.formalism.is_equal(“HL7:GTS”)

CLASS DV_GENERAL_TIME_SPECIFICATION
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 65 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

RM.DATA_TYPES.ENCAPSULATED Package The openEHR Data Types Information Model
Rev 1.8
9 RM.DATA_TYPES.ENCAPSULATED Package

9.1 Overview
The Encapsulated package contains classes representing data values whose internal structure is
defined outside the EHR model, such as multimedia and parsable data. It is illustrated in FIGURE 11.

The semantics of the classes DV_ENCAPSULATED and DV_MULTIMEDIA are based on the ED type
from the HL7v3 data types specification.

9.2 Class Descriptions

9.2.1 DV_ENCAPSULATED Class

CLASS DV_ENCAPSULATED (abstract)

Purpose Abstract class defining the common meta-data of all types of encapsulated data.

ISO 18308 STR 2.6

CEN TBD

OMG HDTF COAS::MultiMedia

HL7 Encapsulated_data (ED)

Inherit DATA_VALUE

DV_PHYSICAL_DATA

ENCAPSULATED

DATA_VALUE

FIGURE 11 RM.DATA_TYPES.ENCAPSULATED Package

DV_ENCAPSULATED

charset[0..1]: CODE_PHRASE

language[0..1]: CODE_PHRASE

size[1]: Integer

DV_MULTIMEDIA

alternate_text[0..1]: String

uri[0..1]: DV_URI

data[0..1]: Array<Character>

media_type[1]: CODE_PHRASE

compression_algorithm[0..1]: CODE_PHRASE

integrity_check[0..1]: Array<Character>

integrity_check_algorithm[0..1]: CODE_PHRASE

size[1]: Integer

DV_PARSABLE

value[1]: String

formalism[1]: String

size: Integer

0..1thumbnail
Date of Issue: 09 Mar 2004 Page 66 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model RM.DATA_TYPES.ENCAPSULATED Package
Rev 1.8
9.2.2 DV_MULTIMEDIA Class

Attributes Signature Meaning

charset: CODE_PHRASE IANA character set name if data is formatted
text. See http://www.iana.org/assign-
ments/character-sets and
http://www.cs.tut.fi/~jkor-
pela/chars/sorted.html. Otherwise Void

language: CODE_PHRASE Name of language used if data is formatted
text, from ISO 639:1988 (E/F) "Code for the
representation of names of languages". For a
definitive rendition see http://www.uni-
code.org/unicode/onlinedat/languages.html.
Otherwise Void.

size: Integer size in bytes of data. Note that for expanded
data, size may
not always equal `data.count'

Functions Signature Meaning

as_string: String Result = alternate_text [(uri)]

Invariant

Size_positive: size >= 0
Language_valid: language /= Void and then code_set(“languages”).has(lan-
guage)
Charset_valid: charset /= Void and then code_set(“character sets”).has(charset)

CLASS DV_MULTIMEDIA

Purpose
A specialisation of DV_ENCAPSULATED for audiovisual and biosignal types.
Includes further metadata relating to multimedia types which are not applicable to
other subtypes of DV_ENCAPSULATED.

Use

ISO 18308 STR 3.1

Synapses
The Bulky Data class provides for the representation and storage of all binary data
classified by its MIME type.

GEHR G1_MULTIMEDIA_DATA

HL7 Encapsulated_data (ED)

Inherit DV_ENCAPSULATED

CLASS DV_ENCAPSULATED (abstract)
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 67 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets
http://www.cs.tut.fi/~jkorpela/chars/sorted.html
http://www.cs.tut.fi/~jkorpela/chars/sorted.html
http://www.unicode.org/unicode/onlinedat/languages.html
http://www.unicode.org/unicode/onlinedat/languages.html

RM.DATA_TYPES.ENCAPSULATED Package The openEHR Data Types Information Model
Rev 1.8
Attributes Signature Meaning

alternate_text: String Text to display in lieu of multimedia display/replay

media_type: CODE_PHRASE Data media type coded from the IANA MIME
types code set. See:
http://www.iana.org/assignments/media-

types/

compression_algorithm:
CODE_PHRASE

compression type, a coded value from the
openEHR “Integrity check” code set. Void means
no compression.

integrity_check:
Array <Character>

binary cryptographic integrity checksum

integrity_check_algorithm:
CODE_PHRASE

type of integrity check, a coded value from the
openEHR “Integrity check” code set.

thumbnail:
DV_MULTIMEDIA

the thumbnail for this item, if one exists; mainly
for graphics formats.

uri: DV_URI URI reference to electronic information stored out-
side the record as a file, database entry etc, if sup-
plied as a reference.

data: Array <Character> the actual data found at 'uri', if supplied inline

Functions Signature Meaning

is_external: Boolean
ensure
uri /= Void implies Result

Computed from the value of the uri attribute: True
if the data is stored externally to the record, as
indicated by `uri'. A copy may also be stored inter-
nally, in which case `is_expanded' is also true.

is_inline: Boolean
ensure
data /= Void implies Result

Computed from the value of the data attribute:
True if the data is stored in expanded form, ie
within the EHR itself.

is_compressed: Boolean
ensure
compression_algorithm /=
Void implies Result

Computed from the value of the
compression_algorithm attribute: True if the data
is stored in compressed form.

has_integrity_check:
Boolean
ensure
integrity_check_algorithm /=
Void implies Result

Computed from the value of the
integrity_check_algorithm attribute: True if an
integrity check has been computed.

CLASS DV_MULTIMEDIA
Date of Issue: 09 Mar 2004 Page 68 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

http://www.iana.org/assignments/media-types/
http://www.iana.org/assignments/media-types/

The openEHR Data Types Information Model RM.DATA_TYPES.ENCAPSULATED Package
Rev 1.8
9.2.3 DV_PARSABLE Class

Invariant

Not_empty: is_inline or is_external
Media_type_terminology: media_type /= Void and then
code_set(“media types”).all_codes.has(media_type)
Compression_algorithm_terminology: compression_algorithm /= Void implies
code_set(“compression algorithm”).all_codes.has(compression_algorithm)
Integrity_check_validity: integrity_check /= Void implies
integrity_check_algorithm /= Void
Integrity_check_algorithm_terminology: integrity_check_algorithm /= Void
implies code_set(“integrity check algorithm”).has(integrity_check_algorithm)

CLASS DV_PARSABLE

Purpose

Encapsulated data expressed as a parsable String. The internal model of the
data item is not described in the openEHR model in common with other encapsu-
lated types, but in this case, the form of the data is assumed to be plaintext, rather
than compressed or other types of large binary data.

Use Used for representing values which are formal textual representations, e.g. guide-
lines.

ISO 18308 (none)

Inherit DV_ENCAPSULATED

Attributes Signature Meaning

value: String the string, which may validly be
empty in some syntaxes

formalism: String name of the formalism, e.g. “GLIF
1.0”, “proforma” etc.

Invariant value_valid: value /= Void
formalism_exists: formalism /= Void and then not formalism.is_empty

CLASS DV_MULTIMEDIA
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 69 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

RM.DATA_TYPES.URI Package The openEHR Data Types Information Model
Rev 1.8
10 RM.DATA_TYPES.URI Package

10.1 Overview
The Uri package includes two types used for referring to information resources. The DV_URI type
allows data values which are references to objects on the world wide web to be created. Its specialisa-
tion, DV_EHR_URI, enables any element in an openEHR record to be identified in the same way as
other objects on the web. The DV_EHR_URI type is convenient, because it is a string, like any other
URI, and is therefore easily transportable and processable. Because it has its own scheme space,
“ehr”, instances can be globally unique, as long as EHR identification is globally unique.
DV_EHR_URIs are used to express all runtime paths in the EHR. The URI Package is illustrated in
FIGURE 12.

10.2 Definitions
The following symbolic definitions are used in the classes below.

• Ehr_scheme: String is “ehr”

10.3 Class Descriptions

FIGURE 12 RM.DATA_TYPES.URI Package

DV_EHR_URI

ehr_id[1]: String
composition_id[1]: String
section_id[1]: String
entry_id[1]: String
target: LOCATABLE
target_is_ehr: Boolean
target_is_composition: Boolean
target_is_section: Boolean
target_is_entry: Boolean

DV_URI
value[1]: String

scheme: String
path: String
fragment_id: String
query: String

DATA_VALUE

URI
Date of Issue: 09 Mar 2004 Page 70 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model RM.DATA_TYPES.URI Package
Rev 1.8
10.3.1 DV_URI Class

CLASS DV_URI

Purpose

A reference to an object which conforms to the Universal Resource Identifier
(URI) standard, as defined by W3C RFC 2936. See "Universal Resource Identifi-
ers in WWW" by Tim Berners-Lee at
http://www.ietf.org/rfc/rfc2396.txt. This is a World-Wide Web RFC
for global identification of resources.

See http://www.w3.org/Addressing for a starting point on URIs.

See http://www.ietf.org/rfc/rfc2806.txt for new URI types like tele-
phone, fax and modem numbers.

Use Enables external resources to be referenced from within the content of the EHR.
A number of functions return the logical subparts of the URI string.

MisUse

CEN TBD

OMG HDTF COAS::TechnologyInstanceLocator

HL7 TBD

Inherit DATA_VALUE

Attributes Signature Meaning

value: String Value of URI as a String.

Functions Signature Meaning

scheme: String A distributed information "space" in which infor-
mation objects exist. The scheme simultaneously
specifies an information space and a mechanism for
accessing objects in that space. For example if
scheme = "ftp", it identifies the information space
in which all ftpable objects exist, and also the
application - ftp - which can be used to access them.
Values may include: "ftp", "telnet", "mailto",
"gopher" and many others. Refer to WWW URI
RFC for a full list.
New information spaces can be accommodated
within the URI specification.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 71 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

http://www.ietf.org/rfc/rfc2396.txt

RM.DATA_TYPES.URI Package The openEHR Data Types Information Model
Rev 1.8
10.3.2 DV_EHR_URI Class

path: String A string whose format is a function of the
scheme. Identifies the location in <scheme>-
space of an information entity. Typical values
include hierarchical directory paths for any
machine. For example, with scheme = "ftp", path
might be /pub/images/image_01. The strings
"." and ".." are reserved for use in the path. Paths
may include internet/intranet location identifiers
of the form: sub_domain...domain, e.g.
"info.cern.ch"

fragment_id: String A part of, a fragment or a sub-function within an
object. Allows references to sub-parts of objects,
such as a certain line and character position in a
text object. The syntax and semantics are defined
by the application responsible for the object.

query: String Query string to send to application implied by
scheme and path Enables queries to applications,
including databases to be included in the URI
Any query meaningful to the server, including
SQL.

Invariant value_exists: value /= Void and then not value.is_empty

CLASS DV_EHR_URI

Purpose A DV_EHR_URI is a DV_URI which has the scheme name “ehr”, and which can
only reference elements in EHRs. The syntax is described below.

Use Used to reference elements in an EHR, which may be the current one, or another.

Inherit DV_EHR_URI

Functions Signature Meaning

ehr_id: String the EHR identification part of the URI,
extracted from the value.

composition_id: String the Composition identification part of the
URI, extracted from the value.

section_id: String the Section identification part of the URI,
extracted from the value.

entry_id:String the Entry identification part of the URI,
extracted from the value.

CLASS DV_URI
Date of Issue: 09 Mar 2004 Page 72 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model RM.DATA_TYPES.URI Package
Rev 1.8
10.3.2.1 DV_EHR_URI Syntax
The syntax of a DV_EHR_URI is an openEHR path, inside the “ehr” URI scheme-space, and is of the
form:

“ehr://” ehr_path

The syntax of ehr_path is described in the section on Paths in The openEHR EHR Reference Model

DV_EHR_URIs are used as the mechanism for all referencing in the EHR, ensuring readability by
humans, as well as validity when extracts are transmitted elsewhere: even if the target of a path is not
present, the path can be used to locate the missing item on demand.

target_is_ehr: Boolean True if target is an EHR

target_is_composition: Boolean True if target is a Composition

target_is_section: Boolean True if target is an Section

target_is_entry: Boolean True if target is an Entry

Invariant Scheme_is_ehr: scheme.is_equal(Ehr_scheme)

CLASS DV_EHR_URI
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 73 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

Implementation Strategies The openEHR Data Types Information Model
Rev 1.8
11 Implementation Strategies

11.1 Overview
This section notes a few of the general challenges for mapping the openEHR data types to implemen-
tation technologies such as programming languages and XML. For specific guidelines, Implementa-
tion Technology Specification (ITS) document for each target formalism should be consulted.

11.2 Unicode
Unicode is supported in various ways in different languages. In Java, since JDK 1.1, unicode support
is implicit in the base classes. From the documentation:

the classes java.io.InputStreamReader, java.io.OutputStreamWriter, and
java.lang.String can convert between Unicode and a number of other character
encodings. More information is available at:
http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.html.

In the C# language, conversion can be done between Unicode and other codepages using the Sys-
tem.Text.UnicodeEncoding (for UTF-16) and System.Text.UTF8Encoding (for UTF-8)
classes.

In XML unicode is handled by specifying the encoding of the document in the XML declaration, e.g.
<?xml version="1.0" encoding="UTF-16"?>.

In the Eiffel language, unicode is available in the Gobo public domain library (see
http://www.gobosoft.com), in the UC_STRING class, which inherits from the String class.

The support in other languages varies, and may require a special type like the UC_STRING used in
Eiffel.

11.3 Dates and Times
In some formalisms, dates and times are represented using a single calendar-like class. This is not
considered to be good practice from the point of specification, since it is more difficult to state proper
invariants for such a class used to represent a particular logical type such as a DATE or TIME, how-
ever, its utility in implementation is recognised.

Where implementors want to use such a class (call it CALENDAR here for the sake of discussion) the
recommended approach is to wrap the class CALENDAR with classes representing the types described
in this specification, i.e. DATE etc. This enables the addition of any necessary functionality in the
wrapper for example, for serialising and deserialising in and out of XML.
Date of Issue: 09 Mar 2004 Page 74 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.html
http://www.gobosoft.com

The openEHR Data Types Information Model Comparison with HL7v3 Types
Rev 1.8
12 Comparison with HL7v3 Types

12.1 Scope
Some HL7v3 types are not modelled in openEHR. HL7v3 V3DT types which are assumed by
openEHR to exist in the underlying type system of any implementation technology include:

• Integer (INT)

• Real (REAL)

• Set (SET)

• List (LIST)

• Bag (BAG)

HL7v3 types which are not modelled here because they are almost always too volatile for concrete
modelling, and can be created with archetyped generic information structures are as follows (even in
HL7 they are really data structures rather than data types):

• Postal address (AD)

• Entity name (EN)

• Person name (PN)

• Organisation name (ON)

• Trivial name (TN)

These types are all modelled by archetyped spatial data structures in openEHR (equivalent to sub-
types of Structure in the CDA specification).

HL7v3 types which may need to be modelled in the future include:

• Uncertain value probabilistic (UVP)

• Non-parametric probability distribution (NPPD)

• Parametric probability distribution (PPD)

Types which are provided by openEHR but not supported directly by HL7 include:

• state variable (DV_STATE);

• ordinal values (DV_ORDINAL);

• explicit partial date and time types (DV_PARTIAL_DATE, DV_PARTIAL_TIME);

• explicit time duration (DV_DURATION).

Types in the latter two categories appear to be implementable with the TS (timestamp) type.

12.2 Design Differences
There are some significant differences in design approach between the openEHR data types and the
HL7v3 data types, described in the following sections.

12.2.1 Naming
All types in the HL7 specification have two names, one short and one long. For example the type rep-
resenting physical quantities is known both as “PhysicalQuantity” and “PQ”. While short names may
be reasonable for often-used types, someshort names are not obvious, e.g. “EN”, “ON”, “TN”,
“NPPD” etc. Short names certainly have benefits for drawing tools such as Rational Rose or other
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 75 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

Comparison with HL7v3 Types The openEHR Data Types Information Model
Rev 1.8
UML tools, however, it is questionable whether a formal model should include concept names chosen
on the basis of visual appearance in such tools (one might argue that such tools should provide aliases
for visual purposes, without changing the actual model). Another problem is that UML does not
include the concept of class name aliases, nor do most programming languages.

The openEHR model uses one name only for each class.

12.2.2 Identification
The HL7 V3DT includes the types II, UID, OID and UUID. The II type is claimed to be for identify-
ing all kinds of entities, which we here classify as real-world entities (“RWEs”) (such as people, vehi-
cle registrations, invoices) and informational entities (“IEs”) - which in general are snapshots of data
representing an RWE in a computer system. One problem with RWE identification schemes is that
some are known (e.g. social security number) to produce fallible identifiers or situations where multi-
ple RWEs have the same identifier, or no identifier at all. Conversely, with well-controlled and inter-
nationally agreed ways of issuing/generating information system identifiers (e.g. GUID, ISO OID) it
is thought that such identifiers can be made reliable, and indeed correspond 1:1 with their intended
IEs. However, a problem with IEs is that there are often duplicates and also multiple versions in time,
each intended to represent the same RWE (such as a particular person, observation or composition).

As far as can be ascertained currently, there is no standard analysis taking into account the existence
of IEs and RWEs, and recognising the fact that multiple versions and/or duplicates may refer to the
same RWE.

The approach taken in openEHR with respect to identifiers is currently as follows.

• RWE identifiers such as social security numbers, licence numbers, etc are not currently
modelled with any specific type, although it appears one might be justified in the future.
Likely attributes include:

- assigning_authority
- id
- valid_time
- other attributes (e.g. attestation status, assigning criteria?)

This type could be a subtype of DATA_VALUE, i.e. it would be a data type. The attributes
listed above are nearly the same as for the HL7 II type, indicating that the two types may be
compatible.

• Identification of IEs is done using the type OBJECT_ID, which is not a data type, and is doc-
umented in the Common Reference Model. The OBJECT_ID type takes into account the fact
that there may be multiple IEs referring to the same underlying RWE by adding a version
identifier (assumed to be a timestamp).

12.2.3 Archetyping
The openEHR data types are defined on the assumption of archetype-based systems. While they will
work perfectly well in systems which know nothing about archetyping, some types are not defined
because archetypable structures built from more basic entities are assumed instead, rather than con-
cretely modelled data types. These include “types” for address and person name which are found in
HL7v3 and CEN 13606.

12.2.4 Treatment of Inbuilt Types
The HL7v3 data types do not make any assumptions about the existence of types typically built-in to
most object and relational formalisms, such as the basic types String, Integer, Boolean, Real,
Date of Issue: 09 Mar 2004 Page 76 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model Comparison with HL7v3 Types
Rev 1.8
Double, and the generic types Set<T>, Bag<T> and Array<T>. Hence, the types ST, INT, REAL,
BL, SET<T>, BAG<T> and so on are defined by HL7. The advantage of this approach is that the
semantics of all types in the HL7 system, right down to atomic data items are self-contained in the
definition, and do not rely on external semantics. Possible problems with this approach include the
following.

• The HL7 definitions diverge from the OMG and ISO definitions of the basic data types,
which could cause unexpected problems in software development and data processing
which is done in typical development technologies (object-oriented and relational).

• The HL7 types INT and REAL are defined as subtypes of the QTY type, a relationship that
does not exist in any object-oriented formalism for these types (in particular, there is no sub-
stitutability of a type called Integer or Real for a type called Qty built in to any object lan-
guage). The definitions of INT and REAL are also different from those found in most object
formalisms. This might cause some difficulty in implementation.

• The binary data type BIN is represented as a List<BL> (where each item can be True,
False, null), whereas it would normally be expected to be something like Array<Charac-
ter> (i.e. an array of bytes) in most software environments. There does not appear to be any
utility in defining it as List<BL>, since binary data is almost without exception represented
and processed as contiguous arrays of machine bytes.

• The string type ST inherits from the encapsulated data type ED, which in turn inherits from
the binary data type BIN. The result of this is that an instance of ST contains numerous data
attributes relating to multi-media data, and the content is presumably represented as a
List<BL>. This is a major departure from the standard understanding of a string in compu-
ter sciences, which is usually simply an array of characters.

• The HL7 boolean type BL is a three-valued logic type due to the null marker approach (see
below), not the usual two-valued type found in the Boolean concept in programming lan-
guages. The same is true of INT and REAL: due to the null marker design, “null” is a possi-
ble return value of an integer or real as well as true integer and real values.

In general, where differences exist between same-named types in HL7 and an underlying formalism
such as a programming language, there is likely to be some confusion in implementation. Further,
there is likely to be confusion in how to process instances of basic types which contain numerous (and
sometimes recursive) fields which are not used in the standard specifications of basic types.

The openEHR approach with respect to inbuilt types is to assume only those types found in the main-
stream object-oriented programming languages, and in particular, definitive formalisms like OMG
IDL and XML. While this means there there is in theory less control over these types than in the HL7
approach, the number of types involved is quite small, and the problem of bindings to the basic types
of object formalisms is well understood. Additionally, since it is recognised that some data types
defined by openEHR could clash with types found in some languages and libraries, all data type class
names are prefaced with “DV_” to avoid naming confusion, and to allow implementations of
openEHR types to co-exist with existing types in implementation formalisms.

12.2.5 Use of Null Markers
All HL7 data types inherit from the ANY class (equivalent to the DATA_VALUE class in openEHR)
which contains the attributes:

BL nonNull;
CS nullFlavor;
BL isNull;
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 77 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

Comparison with HL7v3 Types The openEHR Data Types Information Model
Rev 1.8
The purpose of these attributes is to indicate whether a datum is Null, and for what reason. Since
some data type classes also appear as the attributes of other data types, the Null markers also indicate
whether any part of a datum is null. Thus, in the class Interval<T> shown below, all attributes have
the possibility of containing a Null marker.

type Interval<T> alias IVL<T> extends Set<T>
{

T low;
BL lowClosed;
T high;
BL highClosed;
T.diff width;
T center;
IVL<T> hull(IVL<T> x);

literal ST;
promotion IVL<T> (T x);
demotion T;
};

For example, this allows an interval with missing ends and width to exist as a structured type. The
consequence of the approach is that the entire model is essentially a model of “partial” data types; any
attribute and any function call may return a Null value, as well as the true values of its type (in fact, in
the specification, Null values are defined to be valid values of all data types). This design decision
was taken in HL7 so that any datum, no matter how unknown, would be structurally representable in
the same way as completely known data, enabling it to be processed in the same way as all other
instances of the same type.

However, an important object-oriented design principle has been ignored in this approach. In the
proper design of classes, properties and class invariants are stated. Invariants are statements which
describe the correctness conditions of instances of the class; the general rule is that the post-condition
of a creation routine (constructor) of a class must be that the invariants are satisfied. For example, an
invariant of the HL7 IVL<T> class could be:

(exists(low) and exists(high)) or else
(exists(low) and exists(width)) or else
(exists(width) and exists(high))

When an instance of this class is created, this condition should be satisfied, and remain satisfied for
the life of the instance. To do otherwise is to create instances of data which other software can make
no assumptions about, and is forced to check every single field, and then determine what to do in an
ad hoc way. (See [6] p366, [4] p43, [5] p29 for detailed explanations of the invariant concept).

Possible consequences of the built-in Null marker design approach include:

• since even HL7’s basic types ST, INT, REAL, LIST<>, SET<> include null markers, process-
ing of null values will be pervasive at the lowest level;

• software will be more complex, both implementations of the data types, and of software
which handle them. This is because the software always has to deal with the possibility of
calls to routines and attributes returning Null values. Most clinical information systems to
date have taken the approach that a datum is either represented as an instance of a formal
type if fully known, or else as narrative text if only partial;

• data may not be always be safely processable, since some software may not properly handle
the null values associated with attributes of partially known data items. Essentially, all soft-
ware which processes the data has to be “null-value aware”, and make no assumptions at all
about whether a particular data instance is valid or not.
Date of Issue: 09 Mar 2004 Page 78 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model Comparison with HL7v3 Types
Rev 1.8
The HL7 data type model is in contrast with simpler approaches such as used in CEN, GEHR, and
openEHR, where data types are formal models of types such as Coded_term, Quantity and so on.
Rather than build the possibility of null markers into every attribute and class in the data types, a sin-
gle null marker is defined in relevant containing classes. This decision is based on the principle that
data types should be defined independently of their context of use. Hence, where data types are used
as data values, such as in the value attribute of the class ELEMENT from the openEHR EHR reference
model, the parallel features is_null and null_flavour are also defined. However, where data types
appear as attributes elsewhere in the model and there is no possibility of them being null, no null
markers are used. FIGURE 13 shows visually the difference between the two approaches.

The consequences of the standard software-engineering approach include:

• data types can be more easily formally specified, since the semantics of invariants, attributes
and operations do not need to include the possibility of null values;

• software implementations are simpler;

• data are always guaranteed to be safely processable for decision support and general query-
ing, since no instance of a formal type will be created in the first place if the datum is very
unreliable;

• null markers only appear in models where they are relevent, rather than everywhere data
types are used;

• however, the openEHR data types do not automatically deal with missing or unknown inter-
nal attribute values (such as missing high and low values for an interval, partial dates etc).

In order to deal with the last possibility, various approaches are used in openEHR:

• for most data which is not fully known, no data type instance is created, and a null marker is
created. Depending on the design of the revelant archetypes, there will usually be the possi-
bility of recording the datum in narrative form;

val

val

val

val

val

Data

FIGURE 13 HL7 and Typical Null value approaches.

HL7

Typical

Value #1
Data
Value #3

null + flavour

val

val

val

val

null

Data
Value #2

null + flavour

null + flavour

null + flavour

val

val

null flavour

val

val

val

val

val

approach

approach

null

null flavour
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 79 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

Comparison with HL7v3 Types The openEHR Data Types Information Model
Rev 1.8
• ENTRYs in the openEHR EHR reference model include a certainty:Boolean attribute, for
recording a level of doubt;

• for particular data types which are often partial, special types are defined. The main types
affected are DV_DATE and DV_TIME, hence the types DV_PARTIAL_DATE and
DV_PARTIAL_TIME exist to define explicitly the semantics of dates with a missing day,
times with missing seconds and so on;

• Intervals of date/time types include types generated when the parameter type is one of the
partial classes, thus, types DV_INTERVAL<DV_PARTIAL_DATE> are possible. This covers
the need for intervals in which some date is missing from the end date/times, while not
allowing intervals with completely missing items to be created;

• for expressing uncertainy more precisely, probability distribution data types (based on the
types defined in HL7) can be used.

A consequence of the HL7 model is that data instances represented in XML or another structured text
format will be structurally the same regardless of whether there are Null values or not. A structured
form for partially known data (which would normally break the invariants of its class) may well be
useful for representing the data as part of a text field, making it easier to use for whatever processing
is possible later on.

12.2.6 Terminology Approach
The approach in openEHR is to assume the existence of a Terminology Server which is the sole
authoritative interface with terminologies of any kind, and is the only entity which can assume
responsibility for querying, post-coordination or other manipulations of terms. No allowance is made
for coordination of “modifiers”, “qualifiers” or any other terms outside the service. As a consequence,
there are no coordination facilities in the type DV_CODED_TEXT, a departure from earlier versions of
the specification - any term provided from the terminology service must already be “coordinated”,
either by the terminology service, or by one of the terminologies it accesses. This places the responsi-
bility of combining terms firmly in the knowledge part of the system, and prevents unsanctioned,
unvalidated combinations being created elsewhere.

12.2.7 Date/Time Approach
The HL7 specification uses a single TS type to represent all logical dates, times, date/times, and par-
tial versions thereof. The openEHR specification defines distinct types for each, since these are the
types which occur in the real world, and it is easier to specify correctness constraints with this
approach. It is recognised that a single type may be used by some implementors (depending on what
is available in the language being used), however, the recommended practice is to wrap any such
types with the logical types described in this specification. This approach reduces the possibility for
any errors in transmitted data (since no strange combinations of year, ... , second can occur not explic-
itly described in the type definitions).

12.2.8 Time Specification Types
The HL7 approach for time specification appears to cover all reasonable requirements, but has some
minor problems, including:

• the types PIVL and EIVL are declared as being generic types (i.e. PIVL<T:TS>,
EIVL<T:TS>), when there appears to be no reason for this;

• the PIVL.phase attribute is used to represent an interval during which a activity occurs,
example given is "2 minutes every 8 hours". However, the "2 mins" is almost always part of
a therapeutic prescription of some kind, not part of the timing specification as such. Thera-
Date of Issue: 09 Mar 2004 Page 80 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model Comparison with HL7v3 Types
Rev 1.8
peutic prescriptions have the form "do X every Y time", where the X describes what to do,
and how long to do it for (e.g. 40 mins massage, administer a drug slowly over 10 mins). In
fact, what we are really interested in with a timing specification is the specification of the
starting points in time of some activity, not a time-based graph of on/off points, whch is
effectively what the PIVL type is now.

12.2.9 Type Conversions
The HL7v3 data types specification allows various type conversions, as follows:

Three kinds of type conversions are defined: promotion, demotion, and character string liter-
als. Type conversions can be implicit or explicit. Implicit type conversion occurs when a certain
type is expected (e.g. as an argument to a statement) but a different type is actually provided.

One notable kind of conversion possible in HL7 is of a value of any type T into an instance of
Set<T>, List<T>, Bag<T> or IVL<T> containing the value.

The openEHR model does not provide for any type conversions other than those automatically avail-
able between inbuilt basic numeric types such as Integer, Float and Double, and between types related
by inheritance, as supported by all object-oriented languages.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 81 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

Comparison with HL7v3 Types The openEHR Data Types Information Model
Rev 1.8
Date of Issue: 09 Mar 2004 Page 82 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model References
Rev 1.8
A References

A.1 General
1 Berners-Lee T. "Universal Resource Identifiers in WWW". Available at ht-

tp://www.ietf.org/rfc/rfc2396.txt. This is a World-Wide Web RFC for global
identification of resources. In current use on the web, e.g. by Mosaic, Netscape and similar
tools. See http://www.w3.org/Addressing for a starting point on URIs.

2 Beale T. Archetypes: Constraint-based Domain Models for Future-proof Information Systems.
See http://www.deepthought.com.au/it/archetypes.html.

3 Beale T et al. Design Principles for the EHR. See http://www.deepthought.com.au/openEHR.

4 Booch G. Object-Oriented Analysis and Design with applications. 2nd ed. Benjamin/Cum-
mings 1994.

5 Kilov H. Information Modelling - an object-oriented approach. Prentice Hall 1994.

6 Meyer B. Object-oriented Software Construction, 2nd Ed. Prentice Hall 1997.

7 Richards E G. Mapping Time - The Calendar and its History. Oxford University Press 1998.

8 Schadow G, McDonald C J. The Unified Code for Units of Measure, Version 1.4, April 27,
2000. Regenstrief Institute for Health Care, Indianapolis. See http://aurora.rg.iu-
pui.edu/UCUM

9 ISO 8601 standard describing formats for representing times, dates, and durations. See e.g.
http://www.mcs.vuw.ac.nz/technical/software/SGML/doc/iso8601/ISO8601.html and ht-
tp://www.cl.cam.ac.uk/~mgk25/iso-time.html.

A.2 European Projects
10 Dixon R, Grubb P, Lloyd D. EHCR Support Action Deliverable 3.5: "Final Recommendations

to CEN for future work". Oct 2000. Available at http://www.chime.ucl.ac.uk/HealthI/EHCR-
SupA/documents.htm.

A.3 CEN
11 ENV 13606-1 - Electronic healthcare record communication - Part 1: Extended architecture.

CEN/ TC 251 Health Informatics Technical Committee.

12 ENV 13606-2 - Electronic healthcare record communication - Part 2: Domain term list. CEN/
TC 251 Health Informatics Technical Committee.

13 ENV 13606-3 - Electronic healthcare record communication - Part 3: Distribution rules. CEN/
TC 251 Health Informatics Technical Committee.

A.4 GEHR Australia
14 Beale T, Heard S. GEHR Technical Requirements. See http://www.gehr.org/technical/require-

ments/gehr_requirements.html.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 83 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/Addressing
http://www.deepthought.com.au/it/archetypes.html
http://www.deepthought.com.au/it/archetypes.html
http://aurora.rg.iupui.edu/UCUM
http://aurora.rg.iupui.edu/UCUM
http://www.mcs.vuw.ac.nz/technical/software/SGML/doc/iso8601/ISO8601.html
http://www.cl.cam.ac.uk/~mgk25/iso-time.html
http://www.cl.cam.ac.uk/~mgk25/iso-time.html
http://www.chime.ucl.ac.uk/HealthI/EHCR-SupA/documents.htm
http://www.chime.ucl.ac.uk/HealthI/EHCR-SupA/documents.htm
http://www.gehr.org/technical/requirements/gehr_requirements.html
http://www.gehr.org/technical/requirements/gehr_requirements.html

References The openEHR Data Types Information Model
Rev 1.8
A.5 HL7
15 Schadow G, Biron P. HL7 version 3 deliverable: Version 3 Data Types. (2nd ballot 2002 ver-

sion).
Date of Issue: 09 Mar 2004 Page 84 of 85 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003 The openEHR Foundation

The openEHR Data Types Information Model
Rev 1.8

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 85 of 85 Date of Issue: 09 Mar 2004

© 2003 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

END OF DOCUMENT

	REFERENCE MODEL
	The openEHR Data Types Information Model
	Copyright Notice
	Amendment Record
	Acknowledgements
	Table of Contents
	1 Introduction
	1.1 Purpose
	1.2 Related Documents
	1.3 Status
	1.4 Peer review

	2 Background
	2.1 Scope
	2.2 Design Criteria
	2.3 Prior Work

	3 Introduction
	3.1 Overview
	3.2 Package Structure

	4 RM.DATA_TYPES.BASIC Package
	4.1 Overview
	4.2 Class Descriptions
	4.2.1 DATA_VALUE Class
	4.2.2 DV_BOOLEAN Class
	4.2.3 DV_STATE Class

	5 RM.DATA_TYPES.TEXT Package
	5.1 Overview
	5.1.1 Requirements
	5.1.1.1 Narrative Text
	5.1.1.2 Terminological Entities

	5.1.2 Design
	5.1.3 Qualification
	5.1.4 Meaning Modification
	5.1.4.1 Mode-changing Terms
	5.1.4.2 Context Sensitivity
	5.1.4.3 Negation
	5.1.4.4 Representation of Meaning-Modifying Terms

	5.1.5 Mappings
	5.1.5.1 Classification (Broader Terms)
	5.1.5.2 Equivalents (Synonymous Terms)
	5.1.5.3 More Specific Mappings (Narrower Terms)
	5.1.5.4 The Unified Medical Language System (UMLS)
	5.1.5.5 Legacy Mapping Scenarios

	5.1.6 Language Translations

	5.2 Class Descriptions
	5.2.1 DV_TEXT Class
	5.2.2 TERM_MAPPING Class
	5.2.3 CODE_PHRASE Class
	5.2.4 DV_CODED_TEXT Class
	5.2.5 DV_PARAGRAPH Class

	6 RM.DATA_TYPES.QUANTITY Package
	6.1 Overview
	6.1.1 Requirements
	6.1.2 Overall Design
	6.1.3 Ordinal Values
	6.1.4 Accuracy and Uncertainty
	6.1.5 Reference Ranges
	6.1.6 Statistical Reference Data

	6.2 Class Descriptions
	6.2.1 DV_ORDERED Class
	6.2.2 DV_INTERVAL<T : DV_ORDERED> Class
	6.2.3 REFERENCE_RANGE<T:DV_ORDERED> Class
	6.2.4 DV_ORDINAL Class
	6.2.5 DV_QUANTIFIED Class
	6.2.6 DV_MEASURABLE Class
	6.2.7 DV_QUANTITY Class
	6.2.8 DV_COUNT Class
	6.2.9 Units Syntax
	6.2.10 DV_QUANTITY_RATIO Class
	6.2.11 DV_CUSTOMARY_QUANTITY Class

	7 RM.DATA_TYPES.QUANTITY.DATE_TIME Package
	7.1 Overview
	7.1.1 Design Basis
	7.1.2 Fuzzy and Incomplete Date/Times
	7.1.3 Calendar
	7.1.4 Representation

	7.2 Definitions
	7.3 Class Descriptions
	7.3.1 DV_WORLD_TIME Class
	7.3.2 DV_DATE Class
	7.3.3 DV_TIME Class
	7.3.4 DV_DATE_TIME Class
	7.3.5 DV_DURATION Class
	7.3.6 DV_PARTIAL_DATE Class
	7.3.7 DV_PARTIAL_TIME Class

	8 RM.DATA_TYPES.TIME_SPECIFICATION Package
	8.1 Overview
	8.1.1 The HL7 / ISO 8601 Approach

	8.2 Class Descriptions
	8.2.1 DV_TIME_SPECIFICATION Class
	8.2.2 DV_PERIODIC_TIME_SPECIFICATION Class
	8.2.2.1 Phase-linked Time Specification Syntax
	8.2.2.2 Event-linked Periodic Time Specification Syntax

	8.2.3 DV_GENERAL_TIME_SPECIFICATION Class
	8.2.3.1 General Time Specification Syntax

	9 RM.DATA_TYPES.ENCAPSULATED Package
	9.1 Overview
	9.2 Class Descriptions
	9.2.1 DV_ENCAPSULATED Class
	9.2.2 DV_MULTIMEDIA Class
	9.2.3 DV_PARSABLE Class

	10 RM.DATA_TYPES.URI Package
	10.1 Overview
	10.2 Definitions
	10.3 Class Descriptions
	10.3.1 DV_URI Class
	10.3.2 DV_EHR_URI Class
	10.3.2.1 DV_EHR_URI Syntax

	11 Implementation Strategies
	11.1 Overview
	11.2 Unicode
	11.3 Dates and Times

	12 Comparison with HL7v3 Types
	12.1 Scope
	12.2 Design Differences
	12.2.1 Naming
	12.2.2 Identification
	12.2.3 Archetyping
	12.2.4 Treatment of Inbuilt Types
	12.2.5 Use of Null Markers
	12.2.6 Terminology Approach
	12.2.7 Date/Time Approach
	12.2.8 Time Specification Types
	12.2.9 Type Conversions

	A References
	A.1 General
	A.2 European Projects
	A.3 CEN
	A.4 GEHR Australia
	A.5 HL7

