
The Archetype Object Model
Rev 0.5.1

Editors:T Beale
The Archetype Object Model
Editors:T Beale1

Contributors: {A Goodchild, Z Tun}2, {T Austin, D Kalra, N Lea, D Lloyd}3

Revision: 0.5.1

Pages: 59

Keywords: EHR, health records, constraints, archetypes

1. Ocean Informatics Australia (OceanInformatics.biz)
2. Distributed Systems Technology Centre, Brisbane, Australia
(DSTC.edu.au)
3. Centre for Health Informatics and Multi-disciplinary Education
(CHIME), UCL, London (CHIME.ucl.ac.uk)
Page 1 of 59 Date of Issue: 20 Jan 2005

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

© 2004 The openEHR Foundation

The openEHR foundation
is an independent, non-profit community, facilitating the creation and sharing

of health records by consumers and clinicians via open-source, standards-
based implementations.

email: info@openEHR.org web: http://www.openEHR.org

Founding
Chairman

David Ingram, Professor of Health Informatics, CHIME, University
College London

Founding
Members

Dr P Schloeffel, Dr S Heard, Dr D Kalra, D Lloyd, T Beale

Patrons To Be Announced

The Archetype Object Model
Rev 0.5.1
Copyright Notice

© Copyright openEHR Foundation 2001 - 2005
All Rights Reserved

1. This document is protected by copyright and/or database right throughout the
world and is owned by the openEHR Foundation.

2. You may read and print the document for private, non-commercial use.
3. You may use this document (in whole or in part) for the purposes of making

presentations and education, so long as such purposes are non-commercial and
are designed to comment on, further the goals of, or inform third parties
about, openEHR.

4. You must not alter, modify, add to or delete anything from the document you
use (except as is permitted in paragraphs 2 and 3 above).

5. You shall, in any use of this document, include an acknowledgement in the form:
"© Copyright openEHR Foundation 2001-2005. All rights reserved. www.openEHR.org"

6. This document is being provided as a service to the academic community and on
a non-commercial basis. Accordingly, to the fullest extent permitted under
applicable law, the openEHR Foundation accepts no liability and offers no
warranties in relation to the materials and documentation and their content.

7. If you wish to commercialise, license, sell, distribute, use or otherwise copy
the materials and documents on this site other than as provided for in
paragraphs 1 to 6 above, you must comply with the terms and conditions of the
openEHR Free Commercial Use Licence, or enter into a separate written agreement
with openEHR Foundation covering such activities. The terms and conditions of
the openEHR Free Commercial Use Licence can be found at
http://www.openehr.org/free_commercial_use.htm
Date of Issue: 20 Jan 2005 Page 2 of 59 Editors:T Beale

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
Amendment Record

Issue Details Who Completed

0.5.1 Corrected documentation error - return type of
ARCHETYPE_CONSTRAINT.has_path; add optionality markers to
Primitive types UML diagram. Removed erroneous aggregation
marker from ARCHETYPE_ONTOLOGY.parent_archetype and
ARCHETYPE_DESCRIPTION.parent_archetype.

D Lloyd 20 Jan 2005

0.5 CR-000110. Update ADL document and create AOM document.
Includes detailed input and review from:

- DSTC

- CHIME, Uuniversity College London

- Ocean Informatics
Initial Writing. Taken from ADL document 1.2draft B.

T Beale

A Goodchild
Z Tun

T Austin
D Kalra
N Lea

D Lloyd
S Heard
T Beale

10 Nov 2004
Editors:T Beale Page 3 of 59 Date of Issue: 20 Jan 2005

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
Trademarks

Microsoft is a trademark of the Microsoft Corporation
Date of Issue: 20 Jan 2005 Page 4 of 59 Editors:T Beale

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
1 Introduction.. 7
1.1 Purpose...7
1.2 Background ..7
1.2.1 What is an Archetype?...7
1.2.2 Context...7
1.2.3 Tools ..7

2 The Archetype Object Model.. 9
2.1 Design Background..9
2.2 Package Structure...9
2.3 Model Overview ..9
2.3.1 Archetypes as Objects..10
2.3.2 The Archetype Ontology ...12
2.3.3 Archetype Specialisation ...12
2.3.4 Archetype Composition...12
2.4 The Archetype Package ...13
2.4.1 Overview..13
2.4.2 Natural Languages and Translation ...14
2.4.3 ARCHETYPE Class ..14
2.4.4 TRANSLATION_DETAILS Class..16
2.4.5 VALIDITY_KIND Class ...17
2.5 Archetype Description Package...19
2.5.1 Making Changes to Archetypes...19
2.5.2 ARCHETYPE_DESCRIPTION Class ..20
2.5.3 ARCHETYPE_DESCRIPTION_ITEM Class...............................20
2.5.4 AUDIT_DETAILS Class...22
2.6 Constraint Model Package ...23
2.6.1 Overview..23
2.6.2 Semantics...23
2.6.3 ARCHETYPE_CONSTRAINT Class...28
2.6.4 C_ATTRIBUTE Class ...28
2.6.5 C_SINGLE_ATTRIBUTE Class...29
2.6.6 C_MULTIPLE_ATTRIBUTE Class..29
2.6.7 CARDINALITY Class ..30
2.6.8 C_OBJECT Class ..31
2.6.9 C_COMPLEX_OBJECT Class ...31
2.6.10 ARCHETYPE_SLOT Class ..32
2.6.11 ARCHETYPE_INTERNAL_REF Class.......................................32
2.6.12 CONSTRAINT_REF Class...32
2.6.13 C_PRIMITIVE_OBJECT Class ..33
2.6.14 C_DOMAIN_TYPE Class...33
2.7 The Assertion Package...35
2.7.1 Overview..35
2.7.2 Semantics...35
2.7.3 ASSERTION Class..36
2.7.4 EXPR_ITEM Class..36
2.7.5 EXPR_LEAF Class ...37
2.7.6 EXPR_OPERATOR Class...37
2.7.7 EXPR_UNARY_OPERATOR Class...37
Editors:T Beale Page 5 of 59 Date of Issue: 20 Jan 2005

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
2.7.8 EXPR_BINARY_OPERATOR Class ... 38
2.7.9 OPERATOR_KIND Class... 39
2.8 The Primitive Package... 41
2.8.1 C_BOOLEAN Class ... 42
2.8.2 C_STRING Class .. 43
2.8.3 C_INTEGER Class ... 43
2.8.4 C_REAL Class .. 44
2.8.5 C_DATE Class .. 44
2.8.6 C_TIME Class... 45
2.8.7 C_DATE_TIME Class... 46
2.8.8 C_DURATION Class .. 48
2.9 Ontology Package.. 49
2.9.1 Overview ... 49
2.9.2 Semantics .. 49
2.9.3 ARCHETYPE_ONTOLOGY Class ... 50
2.9.4 ARCHETYPE_TERM Class... 52

A Domain-specific Extension Example.................................... 53
A.1 Overview ... 53
A.2 Scientific/Clinical Computing Types .. 53

B Using Archetypes with Diverse Reference Models 55
B.1 Overview ... 55
B.2 Clinical Computing Use .. 55

C References... 57
Date of Issue: 20 Jan 2005 Page 6 of 59 Editors:T Beale

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model Introduction
Rev 0.5.1
1 Introduction

1.1 Purpose
This document describes a generic object model for archetypes, based only upon the generally
accepted semantics of object models (typified by the OMG UML meta-model). The model presented
here can be used as a basis for building software that processes archetypes, independent of their per-
sistent representation; equally, it can be used to develop the output side of parsers that process arche-
types in a linguistic format, such as the openEHR Archetype Definition Language (ADL) [4], XML-
instance and so on. As a specification, it can be treated as an API for archetypes.

It is recommended that the openEHR ADL document [4] be read in conjunction with this document,
since it contains a detailed explanation of the semantics of archetypes, and many of the examples are
more obvious in ADL, regardless of whether ADL is actually used with the object model presented
here or not.

1.2 Background

1.2.1 What is an Archetype?
Archetypes are constraint-based models of domain entities, or what some might call “structured busi-
ness rules”. Each archetype describes configurations of data instances whose classes are described in
a reference model; the instance configurations are considered to be valid exemplars of a particular
domain concept. Thus, in medicine, an archetype might be designed to constrain configurations of
instances of a simple node/arc information model, that express a “microbiology test result” or a
“physical examination”. Archetypes can be composed, specialised, and templated for local use. The
archetype concept has been described in detail by Beale [1], [2]. Most of the detailed formal seman-
tics are described in the openEHR Archetype Definition Language [4]. The openEHR archetype
framework is described in terms of Archetype Definitions and Principles [4] and an Archetype Sys-
tem [5].

1.2.2 Context
The object model described in this document relates to linguistic forms of archetypes as shown in
FIGURE 1. The model (upper right in the figure) is the object-oriented semantic equivalent of the
ADL the Archetype Definition Language BNF language definition, and, by extension, any formal
transformation of it. Instances of the model (lower right on the figure) are themselves archetypes, and
correspond one-to-one with archetype documents expressed in ADL or a related language.

1.2.3 Tools
Various tools exist for creating and processing archetypes. The openEHR tools are available in source
and binary form from the website (http://www.openEHR.org).
Editors:T Beale Page 7 of 59 Date of Issue: 20 Jan 2005

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

http://www.openEHR.org

Introduction The Archetype Object Model
Rev 0.5.1
FIGURE 1 Relationship of Archetype Object Model to Archetype Languages

Archetype
doc parser

arch: top_part main
main: id_decl descr_decl def_decl
id_decl: SYM_ARCHETYPE arch_id
arch_id: ...

archetype language
definition (EBNF)

Archetype object

Archetype

language/syntax
conformance

instance/type
conformance

Archetype

XML-schema
IDL
other concrete
formalisms

direct
mapping

model

(object form)
Date of Issue: 20 Jan 2005 Page 8 of 59 Editors:T Beale

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model The Archetype Object Model
Rev 0.5.1
2 The Archetype Object Model

2.1 Design Background
An underpinning principle of openEHR is the use of archetypes and templates, which are formal
models of domain concepts controlling data structure and content of data. The elements of this archi-
tecture are twofold.

• The openEHR Reference Model (RM), defining the structure and semantics of information
and service interfaces in terms of information models (IMs) and service models (SMs).
These models correspond respectively to the ISP RM/ODP information and computational
viewpoints. The information models define the data of openEHR EHR systems; meaning
that every data instance in a system is an instance of a type defined in the Information Model
(or to be completely correct, the corresponding type in the relevant ITS). The information
model is designed to be invariant in the long term, to minimise the need for software and
schema updates.

• The openEHR Archetype Model (AM), defining the structure and semantics of archetypes
and templates. The AM consists of the archetype language definition language (ADL), the
Archetype Object Model (AOM) and the openEHR Archetype profile (OAP).

The purpose of the ADL is to provide an abstract syntax for textually expressing archetypes and tem-
plates. The AOM defines the object model equivalent, in terms of a UML model. It is a generic
model, meaning that it can be used to express archetypes for any reference model in a standard way.
ADL and the AOM are brought together in an ADL parser: a tool which can read ADL archetype
texts, and whose parse-tree (resulting in-memory object representation) is instances of the AOM.

The purpose of the openEHR Archetype Profile to define which classes and attributes of the
openEHR RM can sensibly archetyped, and to provide custom archetype classes.

2.2 Package Structure
The openEHR Archetype Profile model is defined as the package am.openehr_rm_profile, as illus-
trated in FIGURE 2. It is shown in the context of the openEHR am and am.archetype packages.

2.3 Model Overview
The model described here is a pure object-oriented model that can be used with archetype parsers and
software that manipulates archetypes. It is independent of any particular linguistic expression of an
archetype, such as ADL or OWL, and can therefore be used with any kind of parser. It is dependent

FIGURE 2 openehr.am.archetype Package

archetype

am

openehr_profile
Editors:T Beale Page 9 of 59 Date of Issue: 20 Jan 2005

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model The Archetype Object Model
Rev 0.5.1
only on the types assumed by all openEHR models, which are in two groups. The first are primitive
inbuilt types, whose names and assumed semantics are described by ISO 11404 (the exact openEHR
correspondences are described in the openEHR Support Information Model). The second are assumed
library types:

• Hash <T, K:Comparable> (keyed list of items of any type)
• Interval <T:Comparable> (interval of instances of any ordered type)

To Be Determined: CEN WG I, Delft 7 Feb 2005 - T Nystadnes/D Kalra:
rewrite with correct reference to ISO 11404 / ISO 8601 standards, remove
“defacto standard”

• Date
• Time
• Date_time
• Duration

Action: add State primitive type to list and to primitive package

These types are supported in most implementation technologies, including XML, Java and other pro-
gramming languages. They are not defined in this specification, allowing them to be mapped to the
most appropriate concrete types in each implementation technology.

The openEHR types used are:
• ARCHETYPE_ID
• HIER_OBJECT_ID
• TERMINOLOGY_ID
• CODE_PHRASE
• DV_CODED_TEXT

The last of these can be found in the openEHR RM.Data_types.Text package, and is used only to
represent coded term values in the model. The remaining *_ID types can be found in the openEHR
RM.Common.Identification package.

2.3.1 Archetypes as Objects
FIGURE 3 illustrates various processes that can be responsible for creating an archetype object struc-
ture, including parsing, database retrieval and GUI editing. A parsing process that would typically
turn a syntax expression of an archetype (ADL, XML, OWL) into an object one. The input file is con-
verted by a parser into an object parse tree, shown on the right of the figure, whose types are specified
in this document. Database retrieval will cause the reconstruction of an archetype in memory from a
structured data representation, such as relational data, object data or XML. Direct in-memory editing
by a user with a GUI archetype editor application will cause on-the-fly creation and destruction of
parts of an archetype during the editing session, which would eventually cause the archetype to be
stored in some form when the user decides to commit it.

As shown in the figure, the definition part of the in-memory archetype consists of alternate layers of
object and attribute constrainer nodes, each containing the next level of nodes. In this document, the
word ‘attribute’ refers to any data property of a class, regardless of whether regarded as a ‘relation-
ship’ (i.e. association, aggregation, or composition) or ‘primitive’ (i.e. value) attribute in an object
model. At the leaves are primitive object constrainer nodes constraining primitive types such as
String, Integer etc. There are also nodes that represent internal references to other nodes, constraint
reference nodes that refer to a text constraint in the constraint binding part of the archetype ontology,
and archetype constraint nodes, which represent constraints on other archetypes allowed to appear at
a given point. The full list of node types is as follows:
Date of Issue: 20 Jan 2005 Page 10 of 59 Editors:T Beale

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

http://www.openehr.org/repositories/spec-dev/latest/publishing/architecture/reference_model/data_types/im/REV_HIST.html
http://www.openehr.org/repositories/spec-dev/latest/publishing/architecture/reference_model/common/im/REV_HIST.html
http://www.openehr.org/repositories/spec-dev/latest/publishing/architecture/reference_model/common/im/REV_HIST.html

The Archetype Object Model The Archetype Object Model
Rev 0.5.1
C_complex_object: any interior node representing a constraint on instances of some non-
primitive type, e.g. ENTRY, SECTION;

C_attribute: a node representing a constraint on an attribute (i.e. UML ‘relationship’ or
‘primitive attribute’) in an object type;

C_primitive_object: an node representing a constraint on a primitive (built-in) object type;
Archetype_internal_ref: a node that refers to a previously defined object node in the same

archetype. The reference is made using a path;
Constraint_ref: a node that refers to a constraint on (usually) a text or coded term entity, which

appears in the ontology section of the archetype, and in ADL, is referred to with an
“acNNNN” code. The constraint is expressed in terms of a query on an external entity,
usually a terminology or ontology;

Archetype_slot: a node whose statements define a constraint that determines which other
archetypes can appear at that point in the current archetype. It can be thought of like a
keyhole, into which few or many keys might fit, depending on how specific its shape is.
Logically it has the same semantics as a C_COMPLEX_OBJECT, except that the constraints are
expressed in another archetype, not the current one.

The typename nomenclature “C_complex_object”, “C_primitive_object”, “C_attribute” used here is
intended to be read as “constraint on xxxx”, i.e. a “C_complex_object” is a “constraint on a complex
object (defined by a complex reference model type)”. These typenames are used below in the formal
model.

definition

ontology

constraint_

FIGURE 3 Archetype Parsing Process

parserarchetype
file

→A

binding

C_complex_object

C_primitive_object →A

use_reference

archetype_slot

constraint_refkey

description

term_
binding

Archetype DB

archetype

Archetype
Editor
App

C_attribute (single)

C_attribute (container)

ONT
C

ONT
C

Editors:T Beale Page 11 of 59 Date of Issue: 20 Jan 2005

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model The Archetype Object Model
Rev 0.5.1
2.3.2 The Archetype Ontology
There are no linguistic entities at all in the definition part of an archetype, with the possible exception
of constraints on text items which might have been defined in terms of regular expression patterns or
fixed strings. All linguistic entities are defined in the ontology part of the archetype, in such a way as
to allow them to be translated into other languages in convenient blocks. As described in the
openEHR ADL document, there are four major parts in an archetype ontology: term definitions, con-
straint definitions, term bindings and constraint bindings. The former two define the meanings of var-
ious terms and textual constraints which occur in the archetype; they are indexed with unique
identifiers which are used within the archetype definition body. The latter two ontology sections
describe the mappings of terms used internally to external terminologies. Due to the well-known
problems with terminologies (described in some detail in the openEHR ADL document, and also by
e.g. Rector [6] and others), mappings may be partial, incomplete, approximate, and occasionally,
exact.

2.3.3 Archetype Specialisation
Archetypes can be specialised. The formal rules of specialisation are described in the openEHR
Archetype Semantics document (forthcoming), but in essence are easy to understand. Briefly, an
archetype is considered a specialisation of another archetype if it mentions that archetype as its par-
ent, and only makes changes to its definition such that its constraints are ‘narrower’ than those of the
parent. Any data created via the use of the specialised archetype is thus conformant both to it and its
parent. This notion of specialisation corresponds to the idea of ‘substitubility’, applied to data.

Every archetype has a ‘specialisation depth’. Archetypes with no specialisation parent have depth 0,
and specialised archetypes add one level to their depth for each step down a hierarchy required to
reach them.

2.3.4 Archetype Composition
It the interests of re-use and clarity of modelling, archetypes can be composed to form larger struc-
tures semantically equivalent to a single large archetype. Composition allows two things to occur: for
archetypes to be defined according to natural ‘levels’ or encapsulations of information, and for the re-
use of smaller archetypes by a multitude of others. Archetype slots are the means of composition, and
are themselves defined in terms of constraints.
Date of Issue: 20 Jan 2005 Page 12 of 59 Editors:T Beale

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
2.4 The Archetype Package

2.4.1 Overview
The model of an archetype, illustrated in FIGURE 4, is straightforward at an abstract level, mimick-
ing the structure of an archetype document as defined in the openEHR Archetype Definition Lan-
guage (ADL) document. An archetype consists of identifying information, a description - its meta-
data, a definition - expressed in terms of constraints on instances of an object model, and an ontology.
In the figure, identifying information and lifecycle state are part of the ARCHETYPE class. The arche-
type description is shown separated into revision history information and descriptive information
about the archetype. Revision history information is concerned with the committal of the archetype to
a repository, and takes the form of a list of audit trail items, while descriptive information describes
the archetype itself (regardless of whether it has been committed to a repository of any kind). The
archetype definition, the ‘main’ part of an archetype, is an instance of a C_COMPLEX_OBJECT, which is
to say, the root of the constraint structure of an archetype always takes the form of a constraint on a
non-primitive object type. The last section of an archetype, the ontology, is represented by its own
class, and is what allows the archetypes to be natural language- and terminology-neutral.

FIGURE 4 openehr.am.archetype Package

C_COMPLEX
_OBJECT

ARCHETYPE_

ARCHETYPE_

definition

1

description

1

ontology
ONTOLOGY

DESCRIPTION

1

archetype

constraint_model

AUDIT_
DETAILS

revision_
history

*

description

ontology

ARCHETYPE
uid[0..1]: HIER_OBJECT_ID
archetype_id[0..1]: ARCHETYPE_ID
concept_code[1]: String
parent_archetype_id[0..1]:
ARCHETYPE_ID
original_language[1]: CODE_PHRASE
is_controlled[1]: Boolean
version: String
previous_version: String
concept_name: String
short_concept_name: String
languages_available:
List <CODE_PHRASE>
physical_paths: List<String>
logical_paths(lang: String): List<String>
specialisation_depth: Integer
is_specialised: Boolean
is_valid: Boolean
node_ids_valid: Boolean
internal_references_valid: Boolean
constraint_references_valid: Boolean

[domain extension]

VALIDITY_KIND
const mandatory: Integer = 1001
const optional: Integer = 1002
const disallowed: Integer = 1003
value: Integer

TRANSLATION_DETAILS
language: CODE_PHRASE
author: String
accreditation: String
other_details: Hash<String,
String>

translations

*

Editors:T Beale Page 13 of 59 Date of Issue: 20 Jan 2005

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
A utility class, VALIDITY_KIND is also included in the Archetype package. This class contains one
integer attribute and three constant definitions, and is intended to be used as the type of any attribute
in this constraint model whose value is logically ‘mandatory’, ‘optional’, or ‘disallowed’. It is used in
this model in the classes C_Date, C_Time and C_Date_Time.

2.4.2 Natural Languages and Translation
Archetypes contain some natural language elements, including the description and ontology defini-
tions. Every archetype is therefore created in some original language, which is recorded in the
orginal_language attribute of the ARCHETYPE class. An archetype is translated by doing the following:

• translating every language-dependent element to the new language;
• adding a new TRANSLATION_DETAILS instance to ARCHETYPE.translations, containing

details about the translator, organisation, quality assurance and so on.

The languages_available function provides a complete list of languages in the archetype.

2.4.3 ARCHETYPE Class

CLASS ARCHETYPE

Purpose
Archetype equivalent to ARCHETYPED class in Common reference model.
Defines semantics of identfication, lifecycle, versioning, composition and spe-
cialisation.

Attributes Signature Meaning

archetype_id: ARCHETYPE_ID Multi-axial identifier of this archetype in
archetype space.

uid: HIER_OBJECT_ID OID identifier of this archetype.

concept_code: String The normative meaning of the archetype as a
whole, has the same value as the concept_code
in the archetype ontology; corresponds to the
title feature.

original_language:
CODE_PHRASE

Language in which this archetype was initially
authored. Although there is no language pri-
macy of archetypes overall, the language of
original authoring is required to ensure natural
language translations can preserve quality.
Language is relevant in both the description
and ontology sections.

translations: Hash
<TRANSLATION_DETAILS,
String>

List of details for each natural translation made
of this archetype. For each translation listed
here, there must be corresponding sections in
all language-dependent parts of the archetype.

parent_archetype_id:
ARCHETYPE_ID

Identifier of the specialisation parent of this
archetype.
Date of Issue: 20 Jan 2005 Page 14 of 59 Editors:T Beale

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
description:
ARCHETYPE_DESCRIPTION

Description and lifecycle information of the
archetype - all archetype information that is
not required at runtime.

definition:
C_COMPLEX_OBJECT

Root node of this archetype

ontology:
ARCHETYPE_ONTOLOGY

The ontology of the archetype.

revision_history:
List<AUDIT_DETAILS>

The revision history of the archetype; only
required if is_controlled = True (avoids large
revision histories for informal or private edit-
ing situations).

is_controlled: Boolean True if this archetype is under any kind of
change control (even file copying), in which
case revision history is created.

Functions Signature Meaning

version: String Version of this archetype, extracted from id.

previous_version: String Version of predecessor archetype of this arche-
type, if any.

short_concept_name: String The short concept name of the archetype
extracted from the archetype_id.

concept_name
(a_lang: String): String

The concept name of the archetype in language
a_lang; corresponds to the term definition of
the concept_code attribute in the archetype
ontology.

languages_available:
Set<CODE_PHRASE>

Total list of languages available in this arche-
type, dervied from original_language and
translations.

physical_paths:
Set<String>

Set of language-independent paths extracted
from archetype. Paths obey Xpath-like syntax
and are formed from alternations of
C_OBJECT.node_id and
C_ATTRIBUTE.rm_attribute_name values.

logical_paths (a_lang:
String): Set<String>

Set of language-dependent paths extracted
from archetype. Paths obey the same syntax as
physical_paths, but with node_ids replaced by
their meanings from the ontology.

CLASS ARCHETYPE
Editors:T Beale Page 15 of 59 Date of Issue: 20 Jan 2005

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
2.4.4 TRANSLATION_DETAILS Class

is_specialised: Boolean
ensure
Result implies
parent_archetype_id /= Void

True if this archetype is a specialisation of
another.

specialisation_depth:
Integer
ensure
Result = ontology.
specialisation_depth

Specialisation depth of this archetype; larger
than 0 if this archetype has a parent. Derived
from ontology.specialisation_depth.

node_ids_valid: Boolean True if every node_id found on a C_OBJECT
node is found in ontology.term_codes.

internal_references_valid:
Boolean

True if every ARCHETYPE_INTERNAL_REF.
target_path refers to a legitimate node in the
archetype definition.

constraint_references_valid:
Boolean

True if every CONSTRAINT_REF.reference
found on a C_OBJECT node in the archetype
definition is found in ontol-
ogy.constraint_codes.

is_valid: Boolean
ensure
not (node_ids_valid and
internal_references_valid and
constraint_references_valid)
implies not Result

True if the archetype is valid overall; various
tests should be used, including checks on
node_ids, internal references, and constraint
references.

Invariant

archetype_id_validity: archetype_id /= Void
uid_validity: uid /= Void implies not uid.is_empty
version_validity: version /= Void and then
version.is_equal(archetype_id.version_id)
original_language_valid: original_language /= void and then language /= Void
and then code_set(“languages”).has(original_language)
description_exists: description /= Void
definition_exists: definition /= Void
ontology_exists: ontology /= Void
revision_history_validity: is_controlled implies (revision_history /= Void and
then revision_history.is_empty)
Specialisation_validity: is_specialised implies specialisation_depth > 0

CLASS TRANSLATION_DETAILS

Purpose Class providing details of a natural language translation.

CLASS ARCHETYPE
Date of Issue: 20 Jan 2005 Page 16 of 59 Editors:T Beale

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
2.4.5 VALIDITY_KIND Class

Attributes Signature Meaning

const mandatory: Integer =
1001

Constant to indicate mandatory presence of
something

const optional: Integer =
1002

Constant to indicate optional presence of
something

const disallowed: Integer =
1003

Constant to indicate disallowed presence of
something

value: Integer Actual value

Functions Signature Meaning

valid_validity (a_validity:
Integer): Boolean
ensure
a_validity >= mandatory and
a_validity <= disallowed

Function to test validity values.

Invariant Validity: valid_validity(value)

CLASS VALIDITY_KIND

Purpose An enumeration of three values which may commonly occur in constraint mod-
els.

Use
Use as the type of any attribute within this model, which expresses constraint on
some attribute in a class in a reference model. For example to indicate validity
of Date/Time fields.

Attributes Signature Meaning

const mandatory: Integer =
1001

Constant to indicate mandatory presence of
something

const optional: Integer =
1002

Constant to indicate optional presence of
something

const disallowed: Integer =
1003

Constant to indicate disallowed presence of
something

value: Integer Actual value

Functions Signature Meaning

CLASS TRANSLATION_DETAILS
Editors:T Beale Page 17 of 59 Date of Issue: 20 Jan 2005

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
valid_validity (a_validity:
Integer): Boolean
ensure
a_validity >= mandatory and
a_validity <= disallowed

Function to test validity values.

Invariant Validity: valid_validity(value)

CLASS VALIDITY_KIND
Date of Issue: 20 Jan 2005 Page 18 of 59 Editors:T Beale

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
2.5 Archetype Description Package
To Be Determined: indicate ISO 11179 correspondence

To Be Determined: indicate CEN WG II Medical Knowledge meta-data cor-
respondence/conformance

The archetype.description package is illustrated in FIGURE 5. What is normally considered the
‘meta-data’ of an archetype, i.e. its author, date of creation, purpose, and other descriptive items, is
described by the ARCHETYPE_DESCRIPTION and ARCHETYPE_DESCRIPTION_ITEM classes. The parts of
this that are in natural language, and therefore may require translated versions, are represented in
instances of the ARCHETYPE_DESCRIPTION_ITEM class. Thus, if an ARCHETYPE_DESCRIPTION has
more than one ARCHETYPE_DESCRIPTION_ITEM, each of these should carry exactly the same informa-
tion in a different natural language.

The AUDIT_DETAILS class is concerned with the creation and modification of the archetype in a
repository. Each instance of this class in an actual archetype represents one act of committal to the
repository, with the attributes documenting who, when and why. Where archetypes are managed in a
contolled document repository with versioning, audit information will be stored somewhere in the
repository (e.g. in version control files); the revision_history within the archetype is intended to act
simply as a documentary copy, or trace of the revision history information so far, for the benefit of the
reader of the archetype. Given that archetypes in different places may well be managed in different
kinds of repositories, having a copy of the revision history in a standardised form within the archetype
enables it to be used interoperably by archetype tools.

2.5.1 Making Changes to Archetypes
Any change to an archetype which is committed to the archetype repository causes a new addition to
the revision_history. Some changes cause new revisions only, if they do not change the formal seman-
tics of the archetype, for example, the addition of a new language translation. Changes to the defini-
tion section of the archetype will usually cause a new version of the archetype, i.e. a ‘new’ archetype,
since version is part of the archetype identifier. The rules for which changes cause a new version and
which do not are described in the openEHR Archetype Semantics document.

ARCHETYPE_DESCRIPTION
original_author[1]: String
original_author_organisation[0..1]:
String
lifecycle_state[1]: String
archetype_package_uri[0..1]: String
other_details[0..1]: Hash<String,
String>

ARCHETYPE ARCHETYPE_
DESCRIPTION_ITEM
language[1]: CODE_PHRASE
purpose[1]: String
use[0..1]: String
misuse[0..1]: String
copyright[0..1]: String
original_resource_uri[0..*]: String
other_details[0..1]: Hash<String,
String>

description

FIGURE 5 openehr.am.archetype.description Package

description
1

revision_
history

*

details
1..*

AUDIT_DETAILS
committer[1]: String
committer_organisation[0..1]: String
time_committed[1]: DATE_TIME
revision[1]: String
reason[0..1]: String
change_type[1]: DV_CODED_TEXT

parent_ 1
archetype
Editors:T Beale Page 19 of 59 Date of Issue: 20 Jan 2005

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
2.5.2 ARCHETYPE_DESCRIPTION Class

2.5.3 ARCHETYPE_DESCRIPTION_ITEM Class

CLASS ARCHETYPE_DESCRIPTION

Purpose Defines the descriptive meta-data of an archetype.

Attributes Signature Meaning

original_author: String Original author of this archetype

original_author_organisation:
String

Original author organisation.

lifecycle_state: String Lifecycle state of the archetype, typically
including states such as: initial, sub-
mitted, experimental,
awaiting_approval, approved, super-
seded, obsolete.

details: List<ARCHETYPE_
DESCRIPTION_ITEM>

Details of all parts of archetype description
that are natural language-dependent.

archetype_package_uri:
String

URI of package to which this archetype
belongs.

other_details: Hash<String,
String>

Additional non language-senstive archetype
meta-data, as a list of name/value pairs.

parent_archetype: ARCHETYPE Reference to owning archetype

Invariant

original_author_validity: original_author /= Void and then not
original_author.is_empty
original_author_organisation_validity: original_author_organisation /= Void
implies not original_author_organisation.is_empty
details_exists: details /= Void and then not details.is_empty
language_validity: details.for_all (d |
parent_archetype.languages_available.has(d.language))
Parent_archetype_valid: parent_archetype /= Void and then
parent_archetype.description = Current

CLASS ARCHETYPE_DESCRIPTION_ITEM

Purpose

Language-specific detail of archetype description. When an archetype is trans-
lated for use in another language environment, each
ARCHETYPE_DESCRIPTION_ITEM needs to be copied and translated into the new
language.

Attributes Signature Meaning
Date of Issue: 20 Jan 2005 Page 20 of 59 Editors:T Beale

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
language: CODE_PHRASE The localised language in which the items in
this description item are written. Coded from
openEHR Code Set “languages”.

purpose: String Purpose of the archetype.

use: String Description of the uses of the archetype, i.e.
contexts in which it could be used.

misuse: String Description of any misuses of the archetype,
i.e. contexts in which it should not be used.

copyright: String Optional copyright statement for the arche-
type as a knowledge resource.

original_resource_uri:
List<String>

URI of original clinical document(s) or
description of which archetype is a formalisa-
tion, in the language of this description item.

other_details: Hash<String,
String>

Additional language-senstive archetype
meta-data, as a list of name/value pairs.

Invariant

Language_valid: language /= Void and then code_set(“languages”).has(lan-
guage)
purpose_exists: purpose /= Void and then not purpose.is_empty
use_valid: use /= Void implies not use.is_empty
misuse_valid: misuse /= Void implies not misuse.is_empty
copyright_valid: copyright /= Void implies not copyright.is_empty

CLASS ARCHETYPE_DESCRIPTION_ITEM
Editors:T Beale Page 21 of 59 Date of Issue: 20 Jan 2005

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
2.5.4 AUDIT_DETAILS Class

CLASS AUDIT_DETAILS

Purpose Revision history information for one committal of the archetype to a repository.

Attributes Signature Meaning

committer: String Identification of the author of the main con-
tent of this archetype.

committer_organisation:
String

Identification of the committer’s organisa-
tion.

time_committed: DATE_TIME Date/time of this change

revision: String Revision corresponding to this change. Vari-
ous kinds of change cause only a new revi-
sion, not a version change, for example,
adding a new translation of the ontology,
changing meta-data, and certain changes to
the archetype definition itself.

reason: String Natural language reason for change.

change_type: DV_CODED_TEXT Type of change. Coded using the openEHR
Terminology “audit change type” group.

Invariant

committer_validity: committer /= Void and then not committer.is_empty
committer_organisation_validity: committer_organisation /= Void implies not
committer_organisation.is_empty
time_committed_exists: time_committed /= Void
reason_valid: reason /= Void implies not reason.is_empty
revision_valid: revision /= Void and then not revision.is_empty
Change_type_exists: change_type /= Void and then
terminology(“openehr”).codes_for_group_name(“audit change type”,
“en”).has(change_type.defining_code)
Date of Issue: 20 Jan 2005 Page 22 of 59 Editors:T Beale

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
2.6 Constraint Model Package

2.6.1 Overview
FIGURE 6 illustrates the class model of an archetype definition. This model is completely generic,
and is designed to express the semantics of constraints on instances of classes which are themselves
described in UML (or a similar object-oriented meta-model). Accordingly, the major abstractions in
this model correspond to major abstractions in object-oriented formalisms, including several varia-
tions of the notion of ‘object’ and the notion of ‘attribute’. The notion of ‘object’ rather than ‘class’ or
‘type’ is used because archetypes are about constraints on data (i.e. ‘instances’, or ‘objects’) rather
than models, which are constructed from ‘classes’.

One way to comprehend the model is via the following statements that can be made about it.

• Any archetype definition is an instance of a C_COMPLEX_OBJECT, which can be thought of as
expressing constraints on a object that is of some particular type (recorded in the attribute
rm_type_name) in a reference model, and which is larger than a simple instance of a primi-
tive type such as String or Integer.

• A C_COMPLEX_OBJECT consists of attributes of type C_ATTRIBUTE, which are constraints on
the attributes (i.e. any property, including relationships) of the reference model type.
Accordingly, each C_ATTRIBUTE records the name of the constrained attribute (in
rm_attr_name), the existence and cardinality expressed by the constraint (depending on
whether the attribute it constrains is a multiple or single relationship), and the constraint on
the object to which this C_ATTRIBUTE refers via its children attribute (according to its refer-
ence model) in the form of further C_OBJECTs.

• The key subtypes of C_OBJECT, are C_COMPLEX_OBJECT (described above)
C_PRIMITIVE_OBJECT (constraints on instances of primitive types such as String, Integer,
Boolean and Date).

• The other subtypes of C_OBJECT, namely, ARCHETYPE_SLOT, ARCHETYPE_INTERNAL_REF and
CONSTRAINT_REF are used to express, respectively, a ‘slot’ where further archetypes can be
used to continue describing constraints; a reference to a part of the current archetype that
expresses exactly the same constraints needed at another point; and a reference to a con-
straint on a constraint defined in the archetype ontology, which in turn points to an external
knowledge resource, such as a terminology.

• All nodes in an archetype constraint structure are instances of the supertype
ARCHETYPE_CONSTRAINT, which provides a number of important common features to all
nodes.

2.6.2 Semantics
The effect of the model is to create archetype description structures that are a hierarchical alternation
of object and attribute constraints, as shown in FIGURE 3. This structure can be seen by inspecting an
ADL archetype, or by viewing an archetype in the openEHR ADL workbench [9], and is a direct con-
sequence of the object-oriented principle that classes consist of properties, which in turn have types
that are classes. (To be completely correct, types do not always correspond to classes in an object
model, but it does not make any difference here). The repeated object/attribute hierarchical structure
of an archetype provides the basis for using paths to reference any node in an archetype. Archetype
paths follow a syntax that is a subset of the W3C Xpath syntax.
Editors:T Beale Page 23 of 59 Date of Issue: 20 Jan 2005

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

1]: String
l<Integer>

CARDINALITY
is_ordered[1]: Boolean
is_unique[1]: Boolean
interval[1]: Interval<Integer>
is_bag: Boolean
is_list: Boolean
is_set: Boolean

cardinality 1

C_MULTIPLE_ATTRIBUTE

members:
List<C_OBJECT>
C_PRIMITIVE

primitive

FIGURE 6 openehr.am.archetype.constraint_model Package

children
*

ARCHETYPE_CONSTRAINT
any_allowed[1]: Boolean
is_valid: Boolean
has_path(a_path: String): Boolean
path: String
is_subset_of (other: ARCHETYPE_CONSTRAINT): Boolean

C_OBJECT
rm_type_name[1]: String
occurrences[1]: Interval<Integer>
node_id[1]: String

C_ATTRIBUTE
rm_attribute_name[
existence[1]: Interva

C_PRIMITIVE_OBJECT

ARCHETYPE_
INTERNAL_REF
target_path[1]: String

CONSTRAINT_REF
reference[1]: String

ARCHETYPE_SLOT C_COMPLEX_OBJECT

attributes

*

item 1

invariants

*
ASSERTION

assertion

constraint_model

C_DOMAIN_TYPE

standard_equivalent:
C_COMPLEX_OBJECT

parent

excludes

includes

*
*

C_SINGLE_ATTRIBUTE

alternatives:
List<C_OBJECT>

The Archetype Object Model
Rev 0.5.1
All Node Types
A small number of properties is defined for all node types. The any_allowed flag set on a node indi-
cates that any value permitted by the reference model for the attribute or type in question is allowed
by the archetype; its use permits the logical idea of a completely “open” constraint to be simply
expressed, avoiding the need for any further substructure. The path feature computes the path to the
current node from the root of the archetype, while the has_path function indicates whether a given
path can be found in an archetype. The is_valid function indicates whether the current node and all
subnodes are internally valid according to the semantics of this archetype model.

Attribute Nodes
Constraints on attributes are represented by instances of the two subtypes of C_ATTRIBUTE:
C_SINGLE_ATTRIBUTE and C_MULTIPLE_ATTRIBUTE. For both subtypes, the common constraint is
whether the corresponding instance (defined by the rm_attribute_name attribute) must exist. Both
subtypes have a list of children, representing constraints on the object value(s) of the attribute.

Single-valued attributes (such as Person.date_of_birth: Date) are constrained by instances of the type
C_SINGLE_ATTRIBUTE, which uses the children to represent multiple alternative object constraints for
the attribute value.

Multiply-valued attributes (such as Person.contacts: List<Contact>) are constrained by an instance
of C_MULTIPLE_ATTRIBUTE, which allows multiple co-existing member objects of the container value
of the attribute to be constrained, along with a cardinality constraint, describing ordering and unique-
ness of the container. FIGURE 7 illustrates the two possibilities.

The need for both existence and cardinality constraints in the C_MULTIPLE_ATTRIBUTE class deserves
some explanation, especially as the meanings of these notions are often confused in object-oriented
literature. Quite simply, an existence constraint indicates whether an object will be found in a given
attribute field, while a cardinality constraint indicates what the valid membership of a container
object is. Cardinality is only required for container objects such as List<T>, Set<T> and so on,
whereas existence is always required. If both are used, the meaning is as follows: the existence con-
straint says whether the container object will be there (at all), while the cardinality constraint says
how many items must be in the container, and whether it acts logically as a list, set or bag.

Single-valued C_ATTRIBUTE
with alternatives

Multiple-valued C_ATTRIBUTE
with collection (LIST.items)

FIGURE 7 Single and Multiple-valued C_ATTRIBUTES

(PERSON.address as structured
or free text form)
Editors:T Beale Page 25 of 59 Date of Issue: 20 Jan 2005

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
Primitive Types
Constraints on primitive types are defined by the classes inheriting from C_PRIMITIVE, namely
C_STRING, C_INTEGER and so on. These types do not inherit from ARCHETYPE_CONSTRAINT, but rather
are related by association, in order to allow them to have the simplest possible definitions, independ-
ent even from the rest of ADL, in the hope of acceptance in heath standardisation organisations. Tech-
nically, avoiding inheritance from ARCHETYPE_CONSTRAINT / C_PRIMITIVE_OBJECT into these base
types (in other words, coalescing the classes C_PRIMITIVE_OBJECT and C_PRIMITIVE) does not pose
a problem, but could be effected at a later date if desired.

Constraint References
A CONSTRAINT_REF is really a proxy for a set of constraints on an object that would normally occur at
a particular point in the archetype as a C_COMPLEX_OBJECT, but where the actual definition of the con-
straints is outside the archetype definition proper, and is instead expressed in the binding of the con-
straint reference (e.g. ‘ac0004’) to a query or expression into an external service (such as an ontology
or terminology service). The result of the query could be something like:

• a set of allowed CODED_TERMs e.g. the types of hepatitis
• an INTERVAL<QUANTITY> forming a reference range
• a set of units or properties or other numerical item

To Be Determined: whether this apporach should be used instead:

To Be Determined: The other problem is that the CONSTRAINT_REF could
probably stand for a C_PRIMITIVE_OBJECT, such as a plain C_string or
C_integer (which can still be a little bit complex - e.g. a Interval<Inte-
ger>).

To Be Determined: Following on logically from this, a more correct
modelling prossibility might be to introduce a common parent for
C_COMPLEX_OBJECT and C_PRIMITIVE_OBJECT which corresponds to the idea of
C_OBJECTs 'defined by value in the archetype' (as opposed to defined else-
where, like in binding query to a terminology, or else in an entirely dif-
fernt archetype, which is what the slot gives you). If I introduced such a
type, then CONSTRAINT_REF should have a property called something nlike
'proxy_for' or 'equivalent', which points to this new type, allowing it to
stand for either a primitive or complex constraint structure. Now that you
have driven me to think of that, I see it as being quite a good improvement
- maybe Andrew will have feedback on it.

Assertions
The C_ATTRIBUTE and subtypes of C_OBJECT enable constraints to be expressed in a structural fash-
ion. In addition to this, any instance of a C_COMPLEX_OBJECT may include one or more invariants.
Invariants are statements in a form of predicate logic, which can be used to state constraints on parts
of an object. They are not needed to state constraints on a single attribute (since this can be done with
an appopriate C_ATTRIBUTE), but are necessary to state constraints on more than one attribute, such as
a constraint that ‘systolic pressure should be >= diastolic pressure’ in a blood pressure measurement
archetype. Invariants are expressed using a syntax derived from the OMG’s OCL syntax (adapted for
use with objects rather than classes).
To Be Continued: give decent example

Assertions are also used in ARCHETYPE_SLOTs, in order to express the ‘included’ and ‘excluded’
archetypes for the slot. In this case, each assertion is an expression that refers to parts of other arche-
types, such as its identifier (e.g. ‘include archetypes with short_concept_name matching xxxx’).
Date of Issue: 20 Jan 2005 Page 26 of 59 Editors:T Beale

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
Assertions are modelled here as a generic expression tree of unary prefix and binary infix operators.
Examples of archetype slots in ADL syntax are given in the openEHR ADL document.

Node_id and Paths
The node_id attribute in the class C_OBJECT, inherited to all subtypes, is of great importance in the
archetype constraint model. It has two functions:

• it allows archetype object constraint nodes to be individually identified, and in particular,
guarantees sibling node unique identification;

• it is the main link between the archetype definition (i.e. the constraints) and the archetype
ontology, because each node_id is a ‘term code’ in the ontology.

The existence of node_ids in an archetype is what allows archetype paths to be created, which refer to
each node. Not every node in the archetype needs a node_id, if it does not need to be addressed using
a path; any leaf or near-leaf node which has no sibling nodes from the same attribute can safely have
no node_id.

Domain-specific Extensions
The main part of the archetype constraint model allows any type in a reference model to be arche-
typed - i.e. constrained - in a standard way, which is to say, by a regular cascade of
C_COMPLEX_OBJECT / C_ATTRIBUTE / C_PRIMITIVE_OBJECT objects. This generally works well, espe-
cially for ‘outer’ container types in models. However, it occurs reasonably often that lower level log-
ical ‘leaf’ types need special constraint semantics that are not conveniently achieved with the
standard aproach. To enable such classes to be integrated into the generic constraint model, the class
C_DOMAIN_TYPE is included. This enables the creation of specific “C_” classes, inheriting from
C_DOMAIN_TYPE, which represent custom semantics for particular reference model types. For exam-
ple, a class called C_QUANTITY might be created which has different constraint semantics from the
default effect of a C_COMPLEX_OBJECT / C_ATTRIBUTE cascade representing such constraints in the
generic way (i.e. systematically based on the reference model). An example of domain-specific exten-
sion classes is shown in Domain-specific Extension Example on page 53.

Assumed Values
When archetypes are defined to have optional parts, an ability to define ‘assumed’ values is useful.
For example, an archetype for the concept ‘blood pressure measurement’ might contain an optional
protocol section describing the patient position, with choices ‘lying’, ‘sitting’ and ‘standing’. Since
the section is optional, data could be created according to the archetype which does not contain the
protocol section. However, a blood pressure cannot be taken without he patient in some position, so
clearly there could be an implied or ‘assumed’ value. The archetype allows this to be explicitly stated
so that all users/systems know what value to assume when optional items are not included in the data.
Assumed values are definable at the leaf level only, which appears to be adequate for all purposes
described to date; accordingly, they appaer in the C_PRIMITIVE classes.

The notion of assumed values is distinct from that of ‘default values’. The latter is a local require-
ment, and as such is stated in templates; default values do appear in data, while assumed values don’t.
Editors:T Beale Page 27 of 59 Date of Issue: 20 Jan 2005

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
2.6.3 ARCHETYPE_CONSTRAINT Class

To Be Continued: Note: is_subset_of is relatively easy to evaluate for
structures, but acNNNN constraints and assertions will be harder, and
will most likely require evaluation in a subsumptive environment like
OWL.

2.6.4 C_ATTRIBUTE Class

CLASS ARCHETYPE_CONSTRAINT (abstract)

Purpose
Archetype equivalent to LOCATABLE class in openEHR Common reference
model. Defines common constraints for any inheritor of LOCATABLE in any refer-
ence model.

Attributes Signature Meaning

any_allowed: Boolean True if any instance value of this type is con-
sidered valid in this archetype. Allows com-
pletely ‘open’ constraints to be expressed
without requiring any further structure.

Functions Signature Meaning

is_valid: Boolean True if this node (and all its sub-nodes) is a
valid archetype node for its type. This func-
tion should be implemented by each subtype
to perform semantic validation of itself, and
then call the is_valid function in any sub-
parts, and generate the result appropriately.

path: String Path of this node relative to root of archetype.

has_path (a_path: String):
Boolean
require
a_path /= Void

True if the relative path a_path exists at this
node.

is_subset_of (other:
ARCHETYPE_CONSTRAINT):
Boolean
require
other /= Void

True if constraints represented by other are
narrower than this node.

Invariant path_exists: path /= Void

CLASS C_ATTRIBUTE(abstract)

Purpose Abstract model of constraint on any kind of attribute node.

Attributes Signature Meaning
Date of Issue: 20 Jan 2005 Page 28 of 59 Editors:T Beale

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
2.6.5 C_SINGLE_ATTRIBUTE Class

2.6.6 C_MULTIPLE_ATTRIBUTE Class

rm_attribute_name: String Reference model attribute within the enclos-
ing type represented by a C_OBJECT.

existence:
Interval<Interval>

Constraint on every attribute, regardless of
whether it is singular or of a container type,
which indicates whether its target object
exists or not (i.e. is mandatory or not).

children: List<C_OBJECT> Child C_OBJECT nodes. Each such node rep-
resents a constraint on the type of this
attribute in its reference model. Multiples
occur both for multiple items in the case of
container attributes, and alternatives in the
case of singular attributes.

Invariant

Rm_attribute_name_valid: rm_attribute_name /= Void and then not
rm_attribute_name.is_empty
Existence_set: existence /= Void and then (existence.lower >= 0 and exist-
ence.upper <= 1)
Children_validity: any_allowed xor children /= Void

CLASS C_SINGLE_ATTRIBUTE

Purpose Concrete model of constraint on a single-valued attribute node. The meaning of
the inherited children attribute is that they are alternatives.

Functions Signature Meaning

alternatives: List<C_OBJECT> List of alternative constraints for the single
child of this attribute within the data.

Invariant Alternatives_exists: alternatives /= Void

CLASS C_MULTIPLE_ATTRIBUTE

Purpose Abstract model of constraint on any kind of attribute node.

Attributes Signature Meaning

cardinality: CARDINALITY Cardinality of this attribute constraint, if it
constraints a container attribute.

Functions Signature Meaning

CLASS C_ATTRIBUTE(abstract)
Editors:T Beale Page 29 of 59 Date of Issue: 20 Jan 2005

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
2.6.7 CARDINALITY Class

members: List<C_OBJECT> List of constraints representing members of
the container value of this attribute within the
data. Semantics of the uniqueness and order-
ing of items in the container are given by the
cardinality.

Invariant
Cardinality_validity: cardinality /= Void
Members_valid: members /= Void and then members.for_all(co: C_OBJECT |
co.occurrences.upper <= 1)

CLASS CARDINALITY

Purpose

Express constraints on the cardinality of container objects which are the values of
multiply-valued attributes, including uniqueness and ordering, providing the
means to state that a container acts like a logical list, set or bag. The cardinality
cannot contradict the cardinality of the corresponding attribute within the relevant
reference model.

Attributes Signature Meaning

is_ordered: Boolean True if the members of the container attribute
to which this cardinality refers are ordered.

is_unique: Boolean True if the members of the container attribute
to which this cardinality refers are unique.

interval: Interval<Integer> The interval of this cardinality.

Attributes Signature Meaning

is_bag: Boolean
ensure
Result = not is_ordered and not
is_unique

True if the semantics of this cardinality repre-
sent a set, i.e. unordered, unique member-
ship.

is_list: Boolean
ensure
Result = is_ordered and not
is_unique

True if the semantics of this cardinality repre-
sent a list, i.e. ordered, non-unique member-
ship.

is_set Boolean
ensure
Result = not is_ordered and
is_unique

True if the semantics of this cardinality repre-
sent a bag, i.e. unordered, non-unique mem-
bership.

Invariant Validity: not interval.lower_unbounded

CLASS C_MULTIPLE_ATTRIBUTE
Date of Issue: 20 Jan 2005 Page 30 of 59 Editors:T Beale

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
2.6.8 C_OBJECT Class

2.6.9 C_COMPLEX_OBJECT Class

CLASS C_OBJECT (abstract)

Purpose Abstract model of constraint on any kind of object node.

Attributes Signature Meaning

rm_type_name: String Reference model type that this node corre-
sponds to.

occurrences:
Interval<Interval>

Occurrences of this object node in the data,
under the owning attribute. Upper limit can
only be greater than 1 if owning attribute has
a cardinality of more than 1).

node_id: String Semantic id of this node, used to differentiate
sibling nodes of the same type. [Previously
called ‘meaning’]. Each node_id must be
defined in the archetype ontology as a term
code.

parent: C_ATTRIBUTE C_ATTRIBUTE that owns this C_OBJECT.

Invariant
rm_type_name_valid: rm_type_name /= Void and then not
rm_type_name.is_empty
node_id_valid: node_id /= Void and then not node_id.is_empty

CLASS C_COMPLEX_OBJECT

Purpose Constraint on complex objects, i.e. any object that consists of other object con-
straints.

Inherit C_OBJECT

Attributes Signature Meaning

attributes:
Set<C_ATTRIBUTE>

List of constraints on attributes of the refer-
ence model type represented by this object.

invariants:
Set<ASSERTION>

Invariant statements about this object. State-
ments are expressed in first order predicate
logic, and usually refer to at least two
attributes.

Invariant

attributes_valid: any_allowed xor (attributes /= Void and not
attributes.is_empty)
invariant_consistency: any_allowed implies invariants = Void
invariants_valid: invariants /= Void implies not invariants.is_empty
Editors:T Beale Page 31 of 59 Date of Issue: 20 Jan 2005

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
2.6.10 ARCHETYPE_SLOT Class

2.6.11 ARCHETYPE_INTERNAL_REF Class

2.6.12 CONSTRAINT_REF Class

CLASS ARCHETYPE_SLOT

Purpose Constraint describing a ‘slot’ where another archetype can occur.

Inherit C_OBJECT

Attributes Signature Meaning

includes: Set <ASSERTION> List of constraints defining other archetypes
that could be included at this point.

excludes: Set<ASSERTION> List of constraints defining other archetypes
that cannot be included at this point.

Invariant
includes_valid: includes /= Void implies not includes.is_empty
excludes_valid: excludes /= Void implies not excludes.is_empty
validity: any_allowed xor includes /= Void or excludes /= Void

CLASS ARCHETYPE_INTERNAL_REF

Purpose A constraint defined by proxy, using a reference to an object constraint defined
elsewhere in the same archetype.

Inherit C_OBJECT

Attributes Signature Meaning

target_path: String Reference to an object node using archetype
path notation.

Invariant
Consistency: not any_allowed
target_path_valid: target_path /= Void and then not target_path.is_empty
-- and then ultimate_root.has_path(target_path)

CLASS CONSTRAINT_REF

Purpose
Reference to a constraint described in the same archetype, but outside the main
constraint structure. This is used to refer to constraints expressed in terms of
external resources, such as constraints on terminology value sets.

Inherit C_OBJECT

Attributes Signature Meaning
Date of Issue: 20 Jan 2005 Page 32 of 59 Editors:T Beale

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
2.6.13 C_PRIMITIVE_OBJECT Class

2.6.14 C_DOMAIN_TYPE Class

reference: String Reference to a constraint in the archetype
local ontology.

Invariant
Consistency: not any_allowed
reference_valid: reference /= Void and then not reference.is_empty
and then archetype.ontology.has_constraint(reference)

CLASS C_PRIMITIVE_OBJECT

Purpose Constraint on a primitive type.

Inherit C_OBJECT

Attributes Signature Meaning

item: C_PRIMITIVE Object actually defining the constraint.

Invariant item_exists: any_allowed xor item /= Void

CLASS C_DOMAIN_TYPE (abstract)

Purpose Abstract parent type of domain-specific constrainer types, to be defined in exter-
nal packages.

Inherit C_OBJECT

Functions Signature Meaning

standard_representation:
C_COMPLEX_OBJECT

Standard form of constraint

Invariant

CLASS CONSTRAINT_REF
Editors:T Beale Page 33 of 59 Date of Issue: 20 Jan 2005

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
Date of Issue: 20 Jan 2005 Page 34 of 59 Editors:T Beale

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
2.7 The Assertion Package

2.7.1 Overview
Assertions are expressed in archetypes in typed first-order predicate logic (FOL). They are used in
two places: to express archetype slot constraints, and to express invariants in complex object con-
straints. In both of these places, their role is to constrain something inside the archetype. Constraints
on external resources such as terminologies are expressed in the constraint binding part of the arche-
type ontology, described in section 2.9 on page 49.

2.7.2 Semantics
The concrete syntax of assertion statements in archetypes is designed to be compatible with the OMG
Object Constraint Language (OCL) [10]. Archetype assertions are essentially statements which con-
tain the following elements:

• variables, which are attribute names, or ADL paths terminating in attribute names (i.e.
equivalent of referencing class feature in a programming language);

• manifest constants of any primitive type, plus date/time types
• arithmetic operators: +, *, -, /, ^ (exponent)
• relational operators: >, <, >=, <=, =, !=, matches
• boolean operators: not, and, or, xor
• quantifiers applied to container variables: for_all, exists

The written syntax of assertions is defined in the openEHR ADL document. The package described
here is currently designed to allow the representation of a general-purpose binary expression tree, as
would be generated by a parser. This may be replaced in the future by a more specific model, if
needed. The assertion package is illustrated below in FIGURE 8.

FIGURE 8 The openehr.am.archetype.assertion package

ASSERTION
string_expression:
String

EXPR_ITEM
type: String

EXPR_OPERATOR
operator: OPERATOR_KIND
precedence_overridden:
Boolean

EXPR_LEAF
item: ANY

EXPR_UNARY_
OPERATOR

EXPR_BINARY_
OPERATOR

left_operand

right_operand

1
1

operand
1

expression

1

ASSERTION_VARIABLE
name: String
definition: String

variables 0..*

OPERATOR_KIND
const eq: Integer = 2001
const ne, le, lt, ge, gt, matches,
multiply, plus, minus, divide, exp,
not, and, or, xor, implies,
for_all, exists: Integer = ...
value: Integer

assertion
Editors:T Beale Page 35 of 59 Date of Issue: 20 Jan 2005

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
This relatively simple model of expressions is sufficiently powerful for representing FOL expressions
on archetype structures, although it could clearly be more heavily subtyped.
To Be Continued: provide examples, covering e.g. the HL7 templates group’s

categories of statement.

2.7.3 ASSERTION Class

2.7.4 EXPR_ITEM Class

CLASS ASSERTION

Purpose Structural model of a typed first order predicate logic assertion, in the form of an
expression tree, including optional variable definitions.

Attributes Signature Meaning

tag: String Expression tag, used for differentiating mul-
tiple assertions.

expression: EXPR_ITEM Root of expression tree.

string_expression: String String form of expression, in case an expres-
sion evaluator taking String expressions is
used for evaluation.

variables:
List<ASSERTION_VARIABLE>

Definitions of variables used in the assertion
expression.

Invariant
Tag_valid: tag /= Void implies not tag.is_empty
Expression_valid: expression /= Void and then expres-
sion.type.is_equal(“BOOLEAN”)

CLASS EXPR_ITEM (abstract)

Purpose Abstract parent of all expression tree items.

Attributes Signature Meaning

type: String Type name of this item. For leaf nodes, must
be the name of a primitive type, or else a ref-
erence model type. The type for any rela-
tional or boolean operator will be
“BOOLEAN”, while the type for any arith-
metic operator, will be “REAL” or “INTE-
GER”

Invariant Type_valid: type /= Void and then not type.is_empty
Date of Issue: 20 Jan 2005 Page 36 of 59 Editors:T Beale

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
2.7.5 EXPR_LEAF Class

2.7.6 EXPR_OPERATOR Class

2.7.7 EXPR_UNARY_OPERATOR Class

CLASS EXPR_LEAF

Purpose Expression tree leaf item

Inherit EXPR_ITEM

Attributes Signature Meaning

item: ANY The value referred to; a manifest constant, an
attribute path, or a C_PRIMITIVE. [Future:
possibly function names as well, even if not
constrained in the archetype - as long as they
are in the reference model].

reference_type: String Type of reference: “constant”, “attribute”,
“function”

Invariant Item_valid: item /= Void

CLASS EXPR_OPERATOR (abstract)

Purpose Abstract parent of operator types.

Inherit EXPR_ITEM

Attributes Signature Meaning

operator: OPERATOR_KIND Code of operator.

precedence_overridden:
Boolean

True if the natural precedence of operators is
overridden in the expression represented by
this node of the expression tree. If True,
parentheses should be introduced around the
totality of the syntax expression correspond-
ing to this operator node and its operands.

Invariant

CLASS EXPR_UNARY_OPERATOR

Purpose Unary operator expression node.

Inherit EXPR_OPERATOR
Editors:T Beale Page 37 of 59 Date of Issue: 20 Jan 2005

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
2.7.8 EXPR_BINARY_OPERATOR Class

Attributes Signature Meaning

operand: EXPR_ITEM Operand node.

Invariant operand_valid: operand /= Void

CLASS EXPR_BINARY_OPERATOR

Purpose Binary operator expression node.

Inherit EXPR_OPERATOR

Attributes Signature Meaning

left_operand: EXPR_ITEM Left operand node.

right_operand: EXPR_ITEM Right operand node.

Invariant left_operand_valid: operand /= Void
right_operand_valid: operand /= Void

CLASS EXPR_UNARY_OPERATOR
Date of Issue: 20 Jan 2005 Page 38 of 59 Editors:T Beale

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
2.7.9 OPERATOR_KIND Class

CLASS OPERATOR_KIND

Purpose Enumeration type for operator types in assertion expressions

Use Use as the type of operators in the Assertion package, or for related uses.

Attributes Signature Meaning

const eq: Integer = 2001 Equals operator (‘=’ or ‘==’)

const ne: Integer = 2002 Not equals operator (‘!=’ or ‘/=’ or ‘<>’)

const le: Integer = 2003 Less-than or equals operator (‘<=’)

const lt: Integer = 2004 Less-than operator (‘<=’)

const ge: Integer = 2005 Greater-than or equals operator (‘>=’)

const gt: Integer = 2006 Greater-than operator (‘>’)

const matches: Integer =
2007

Matches operator (‘matches’ or ‘is_in’)

const not: Integer = 2010 Not logical operator

const and: Integer = 2011 And logical operator

const or: Integer = 2012 Or logical operator

const xor: Integer = 2013 Xor logical operator

const xor: Integer = 2014 Implies logical operator

const for_all: Integer =
2015

For-all quantifier operator

const exists: Integer = 2016 Exists quantifier operator

const plus: Integer = 2020 Plus operator (‘+’)

const minus: Integer =
2021

Minus operator (‘-’)

const multiply: Integer =
2022

Multiply operator (‘*’)
Editors:T Beale Page 39 of 59 Date of Issue: 20 Jan 2005

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
const divide: Integer =
2023

Divide operator (‘/’)

const exp: Integer = 2024 Exponent operator (‘^’)

value: Integer Actual value of this instance

Functions Signature Meaning

valid_operator (a_validity:
Integer): Boolean
ensure
a_validity >= eq and
a_validity <= exp

Function to test operator values.

Invariant Validity: valid_operator(value)

CLASS OPERATOR_KIND
Date of Issue: 20 Jan 2005 Page 40 of 59 Editors:T Beale

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
2.8 The Primitive Package
Ultimately any archetype definition will devolve down to leaf node constraints on instances of primi-
tive types. The primitive package, illustrated in FIGURE 9, defines the semantics of constraint on
such types. Most of the types provide at least two alternative ways to represent the constraint; for
example the C_DATE type allows the constraint to be expressed in the form of a pattern (defined in the
ADL specification) or an Interval<Date>. Note that the interval form of dates is probably only use-
ful for historical date checking (e.g. the date of an antique or a particular batch of vaccine), rather than
constraints on future date/times.

Action: add State primitive type

To Be Determined: how to allow “assumed_value” attributes with value

C_PRIMITIVE_OBJECT

primitive

FIGURE 9 The openehr.am.archetype.primitive Package

item 1

C_PRIMITIVE

C_BOOLEAN
true_valid[1]:
Boolean
false_valid[1]:
Boolean
assumed_value:
Boolean

C_STRING
pattern[0..1]: String
list[0..1]: List<String>
list_open[0..1]: Bool-
ean
assumed_value
[0..1]: String

C_INTEGER
list[0..1]: Set<Integer>
range[0..1]:
Interval<Integer>
assumed_value: Integer

C_REAL
list[0..1]: Set<Real>
range[0..1]: Inter-
val<Real>
assumed_value: Real

C_DATE
year_validity[0..1]:
VALIDITY_KIND
month_validity[0..1]:
VALIDITY_KIND
day_validity[0..1]:
VALIDITY_KIND
timezone_validity[0..1]:
VALIDITY_KIND
range[0..1]: Interval<Date>
assumed_value[0..1]: Date

C_TIME
hour_validity[0..1]:
VALIDITY_KIND
minute_validity[0..1]:
VALIDITY_KIND
second_validity[0..1]:
VALIDITY_KIND
millisecond_validity
[0..1]: VALIDITY_KIND
timezone_validity[0..1]:
VALIDITY_KIND
range[0..1]:
Interval<Time>
assumed_value[0..1]:
Time

C_DURATION
range[0..1]:
Interval<Duration>
assumed_value
[0..1]: Duration

C_DATE_TIME
year_validity[0..1]:
VALIDITY_KIND
month_validity[0..1]:
VALIDITY_KIND
day_validity[0..1]:
VALIDITY_KIND
hour_validity[0..1]:
VALIDITY_KIND
minute_validity[0..1]:
VALIDITY_KIND
second_validity[0..1]:
VALIDITY_KIND
millisecond_validity[0..1]:
VALIDITY_KIND
timezone_validity[0..1]:
VALIDITY_KIND
range[0..1]:
Interval<Date_Time>
assumed_value[0..1]:
Date_Time
Editors:T Beale Page 41 of 59 Date of Issue: 20 Jan 2005

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
types integer and real to be logically optional? Use a special value like
Max_int (always dangerous);

2.8.1 C_BOOLEAN Class

CLASS C_BOOLEAN

Purpose Constraint on instances of Boolean.

Use Both attributes cannot be set to False, since this would mean that the Boolean
value being constrained cannot be True or False.

Inherit C_PRIMITIVE

Attributes Signature Meaning

true_valid: Boolean True if the value True is allowed

false_valid: Boolean True if the value False is allowed

assumed_value: Boolean The value to assume if this item is not
included in data, due to being part of an
optional structure.

Invariant
Binary_consistency: true_valid or false_valid
Default_value_consistency: default_value.value and true_valid or else not
default_value.value and false_valid
Date of Issue: 20 Jan 2005 Page 42 of 59 Editors:T Beale

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
2.8.2 C_STRING Class

To Be Continued: TB: is list_open really useful? If the list is open, then
what’s the difference from ‘any_allowed’

2.8.3 C_INTEGER Class

CLASS C_STRING

Purpose Constraint on instances of STRING.

Inherit C_PRIMITIVE

Attributes Signature Meaning

pattern: String Regular expression pattern for proposed
instances of String to match.

list: Set<String> Set of Strings specifying constraint

list_open: Boolean True if the list is being used to specify the
constraint but is not considered exhaustive.

assumed_value: String The value to assume if this item is not
included in data, due to being part of an
optional structure.

Invariant Consistency: pattern /= Void xor list /= Void
pattern_exists: pattern /= Void implies not pattern.is_empty

CLASS C_INTEGER

Purpose Constraint on instances of Integer.

Inherit C_PRIMITIVE

Attributes Signature Meaning

list: Set<Integer> Set of Integers specifying constraint

range: Interval<Integer> Range of Integers specifying constraint

assumed_value: Integer The value to assume if this item is not
included in data, due to being part of an
optional structure.

Invariant Consistency: list /= Void xor range /= Void
Editors:T Beale Page 43 of 59 Date of Issue: 20 Jan 2005

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
2.8.4 C_REAL Class

2.8.5 C_DATE Class

CLASS C_REAL

Purpose Constraint on instances of Real.

Inherit C_PRIMITIVE

Attributes Signature Meaning

list: Set<Real> Set of Reals specifying constraint

range: Interval<Real> Range of Real specifying constraint

assumed_value: Real The value to assume if this item is not
included in data, due to being part of an
optional structure.

Invariant Consistency: list /= Void xor range /= Void

CLASS C_DATE

Purpose
Constraint on instances of Date in the form either of a set of validity values, or an
actual date range. There is no validity flag for ‘year’, since it must always be by
definition mandatory in order to have a sensible date at all.

Use Date ranges are probably only useful for historical dates.

Inherit C_PRIMITIVE

Attributes Signature Meaning

month_validity: VALIDITY_KIND Validity of month in constrained date.

day_validity: VALIDITY_KIND Validity of day in constrained date.

timezone_validity:
VALIDITY_KIND

Validity of timezone in constrained date.

range: Interval<Date> Interval of Dates specifying constraint

assumed_value: Date The value to assume if this item is not
included in data, due to being part of an
optional structure.

Functions Signature Meaning
Date of Issue: 20 Jan 2005 Page 44 of 59 Editors:T Beale

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
2.8.6 C_TIME Class

validity_is_range: Boolean True if validity is in the form of a range;
useful for developers to check which kind
of constraint has been set.

Invariant

Month_validity_optional: month_validity = {VALIDITY_KIND}.optional implies
(day_validity = {VALIDITY_KIND}.optional or day_validity =
{VALIDITY_KIND}.disallowed)
Month_validity_disallowed: month_validity = {VALIDITY_KIND}.disallowed
implies day_validity = {VALIDITY_KIND}.disallowed
Validity_is_range: validity_is_range = (range /= Void)

CLASS C_TIME

Purpose Constraint on instances of Time. There is no validity flag for ‘hour’, since it must
always be by definition mandatory in order to have a sensible time at all.

Inherit C_PRIMITIVE

Attributes Signature Meaning

minute_validity:
VALIDITY_KIND

Validity of minute in constrained time.

second_validity:
VALIDITY_KIND

Validity of second in constrained time.

millisecond_validity:
VALIDITY_KIND

Validity of millisecond in constrained time.

timezone_validity:
VALIDITY_KIND

Validity of timezone in constrained date.

range: Interval<Time> Interval of Times specifying constraint

assumed_value: Time The value to assume if this item is not
included in data, due to being part of an
optional structure.

Functions Signature Meaning

validity_is_range: Boolean True if validity is in the form of a range; use-
ful for developers to check which kind of
constraint has been set.

CLASS C_DATE
Editors:T Beale Page 45 of 59 Date of Issue: 20 Jan 2005

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
2.8.7 C_DATE_TIME Class

Invariant

Minute_validity_optional: minute_validity = {VALIDITY_KIND}.optional implies
(second_validity = {VALIDITY_KIND}.optional or second_validity =
{VALIDITY_KIND}.disallowed)
Minute_validity_disallowed: minute_validity = {VALIDITY_KIND}.disallowed
implies second_validity = {VALIDITY_KIND}.disallowed
Second_validity_optional: second_validity = {VALIDITY_KIND}.optional implies
(millisecond_validity = {VALIDITY_KIND}.optional or
millisecond_validity = {VALIDITY_KIND}.disallowed)
Second_validity_disallowed: second_validity = {VALIDITY_KIND}.disallowed
implies millisecond_validity = {VALIDITY_KIND}.disallowed
Validity_is_range: validity_is_range = (range /= Void)

CLASS C_DATE_TIME

Purpose
Constraint on instances of Date_Time. re is no validity flag for ‘year’, since it
must always be by definition mandatory in order to have a sensible date/time at
all.

Inherit C_PRIMITIVE

Attributes Signature Meaning

month_validity:
VALIDITY_KIND

Validity of month in constrained date.

day_validity: VALIDITY_KIND Validity of day in constrained date.

hour_validity: VALIDITY_KIND Validity of hour in constrained time.

minute_validity:
VALIDITY_KIND

Validity of minute in constrained time.

second_validity:
VALIDITY_KIND

Validity of second in constrained time.

millisecond_validity:
VALIDITY_KIND

Validity of millisecond in constrained time.

timezone_validity:
VALIDITY_KIND

Validity of timezone in constrained date.

range:
Interval<Date_Time>

Range of Date_times specifying constraint

assumed_value: Date_Time The value to assume if this item is not
included in data, due to being part of an
optional structure.

CLASS C_TIME
Date of Issue: 20 Jan 2005 Page 46 of 59 Editors:T Beale

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
Functions Signature Meaning

validity_is_range: Boolean True if validity is in the form of a range; use-
ful for developers to check which kind of
constraint has been set.

Invariant

Month_validity_optional: month_validity = {VALIDITY_KIND}.optional implies
(day_validity = {VALIDITY_KIND}.optional or day_validity =
{VALIDITY_KIND}.disallowed)
Month_validity_disallowed: month_validity = {VALIDITY_KIND}.disallowed
implies day_validity = {VALIDITY_KIND}.disallowed
Day_validity_optional: day_validity = {VALIDITY_KIND}.optional implies
(hour_validity = {VALIDITY_KIND}.optional or hour_validity =
{VALIDITY_KIND}.disallowed)
Day_validity_disallowed: day_validity = {VALIDITY_KIND}.disallowed implies
hour_validity = {VALIDITY_KIND}.disallowed
Hour_validity_optional: hour_validity = {VALIDITY_KIND}.optional implies
(minute_validity = {VALIDITY_KIND}.optional or minute_validity =
{VALIDITY_KIND}.disallowed)
Hour_validity_disallowed: hour_validity = {VALIDITY_KIND}.disallowed
implies minute_validity = {VALIDITY_KIND}.disallowed
Minute_validity_optional: minute_validity = {VALIDITY_KIND}.optional implies
(second_validity = {VALIDITY_KIND}.optional or second_validity =
{VALIDITY_KIND}.disallowed)
Minute_validity_disallowed: minute_validity = {VALIDITY_KIND}.disallowed
implies second_validity = {VALIDITY_KIND}.disallowed
Second_validity_optional: second_validity = {VALIDITY_KIND}.optional implies
(millisecond_validity = {VALIDITY_KIND}.optional or
millisecond_validity = {VALIDITY_KIND}.disallowed)
Second_validity_disallowed: second_validity = {VALIDITY_KIND}.disallowed
implies millisecond_validity = {VALIDITY_KIND}.disallowed
Validity_is_range: validity_is_range = (range /= Void)

CLASS C_DATE_TIME
Editors:T Beale Page 47 of 59 Date of Issue: 20 Jan 2005

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
2.8.8 C_DURATION Class

CLASS C_DURATION

Purpose Constraint on instances of Duration.

Inherit C_PRIMITIVE

Attributes Signature Meaning

range: Interval<Duration> Range of Durations specifying constraint

assumed_value: Duration The value to assume if this item is not
included in data, due to being part of an
optional structure.

Invariant Range_valid: range /= Void
Date of Issue: 20 Jan 2005 Page 48 of 59 Editors:T Beale

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
2.9 Ontology Package

2.9.1 Overview
All linguistic and terminological entities in an archetype are represented in the ontology part of an
archetype, whose semantics are given in the Ontology package, shown below.

An archetype ontology consists essentially of the following things.

• A list of terms defined local to the archetype. These are identified by ‘atNNNN’ codes, and
perform the function of archetype node identifiers from which paths are created. There is
one such list for each natural language in the archetype. A term ‘at0001’ defined in English
as ‘blood group’ is an example.

• A list of external constraint definitions, identified by ‘acNNNN’ codes, for constraints
defined external to the archetype, and referenced using an instance of a CONSTRAINT_REF.
There is one such list for each natural language in the archetype. A term ‘ac0001’ corre-
sponding to ‘any term which is-a blood group’, which can be evaluated against some exter-
nal terminology service.

• Optionally, a set of one or more bindings of term definitions to term codes from external ter-
minologies.

• Optionally, a set of one or more bindings of the external constraint definitions to external
resources such as terminlogies.

2.9.2 Semantics
Specialisation Depth
Any given archetype occurs at some point in a hierarchy of archetypes related by specialisation,
where the depth is indicated by the specialisation_depth attribute. An archetype which is not a spe-
cialisation of another has a specialisation_depth of 0. Term and constraint codes introduced in the

ARCHETYPE_ONTOLOGY
terminologies_available[1]: Set<String>
specialisation_depth[1]: Integer
term_codes[1]: List<String>
constraint_codes[1]: List<String>
term_attribute_names[1]: List<String>
has_language(a_lang: String): Boolean
has_terminology(a_terminology_id:
String): Boolean
constraint_definition(a_lang, a_code:
String): ARCHETYPE_TERM
term_definition(a_lang, a_code: String):
ARCHETYPE_TERM
constraint_binding(a_terminology,
a_code: String): String
term_binding(a_terminology, a_code:
String): CODE_PHRASE

ARCHETYPE ARCHETYPE_TERM
code[1]: String
items[1]: Hash<String, String>

ontology

FIGURE 10 openehr.am.archetype.ontology Package

ontology

1

parent_archetype

1

Editors:T Beale Page 49 of 59 Date of Issue: 20 Jan 2005

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
ontology of specialised archetypes (i.e. which did not exist in the ontology of the parent archetype)
are defined in a strict way, using ‘.’ (period) markers. For example, an archetype of specialisation
depth 2 will use term definition codes like the following:

• ‘at0.0.1’ - a new term introduced in this archetype, which is not a specialisation of any pre-
vious term in any of the parent archetypes;

• ‘at0001.0.1’ - a term which specialises the ‘at0001’ term from the top parent. An interven-
ing ‘.0’ is required to show that the new term is at depth 2, not depth 1;

• ‘at0001.1.1’ - a term which specialises the term ‘at0001.1’ from the immediate parent,
which itself specialises the term ‘at0001’ from the top parent.

This systematic definition of codes enables software to use the structure of the codes to more quickly
and accurately make inferences about term definitions up and down specialisation hierarchies. Con-
straint codes on the other hand do not follow these rules, and exist in a flat code space instead.

Term and Constraint Definitions
Local term and constraint definitions are modelled as instances of the class ARCHETYPE_TERM, which
is a code associated with a list of name/value pairs. For any term or constraint definition, this list must
at least include the name/value pairs for the names “text” and “description”. It might also include
such things as “provenance”, which would be used to indicate that a term was sourced from an exter-
nal terminology. The attribute term_attribute_names in ARCHETYPE_ONTOLOGY provides a list of
attribute names used in term and constraint definitions in the archetype, including “text” and
“description”, as well as any others which are used in various places.

2.9.3 ARCHETYPE_ONTOLOGY Class

CLASS ARCHETYPE_ONTOLOGY

Purpose Local ontology of an archetype.

Attributes Signature Meaning

terminologies_available:
Set<String>

List of terminologies to which term or con-
straint bindings exist in this terminology.

specialisation_depth: Integer Specialisation depth of this archetype.
Unspecialised archetypes have depth 0, with
each additional level of specialisation adding
1 to the specialisation_depth.

term_codes: List<String> List of all term codes in the ontology. Most of
these correspond to “at” codes in an ADL
archetype, which are the node_ids on
C_OBJECT descendants. There may be an
extra one, if a different term is used as the
overall archetype concept_code from that
used as the node_id of the outermost
C_OBJECT in the definition part.
Date of Issue: 20 Jan 2005 Page 50 of 59 Editors:T Beale

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
constraint_codes:
List<String>

List of all term codes in the ontology. These
correspond to the “ac” codes in an ADL
archetype, or equivalently, the
CONSTRAINT_REF.reference values in the
archetype definition.

term_attribute_names:
List<String>

List of ‘attribute’ names in ontology terms,
typically includes ‘text’, ‘description’, ‘prov-
enance’ etc.

parent_archetype: ARCHETYPE Archetype which owns this ontology.

Functions Signature Meaning

has_language(a_lang: String):
Boolean

True if language ‘a_lang’ is present in arche-
type ontology.

has_terminology(a_terminology
_id: String): Boolean
require
has_terminology(a_terminology_
id)

True if terminology ‘a_terminology’ is
present in archetype ontology.

term_definition(a_lang, a_code:
String): ARCHETYPE_TERM
require
has_language(a_lang)
term_codes.has(a_code)

Term definition for a code, in a specified lan-
guage.

constraint_definition(a_lang,
a_code: String):
ARCHETYPE_TERM
require
has_language(a_lang)
constraint_codes.has(a_code)

Constraint definition for a code, in a speci-
fied language.

term_binding
(a_terminology_id, a_code:
String): CODE_PHRASE
require
has_terminology(a_terminology_
id)
term_codes.has(a_code)

Binding of term corresponding to a_code in
target external terminology a_terminology_id
as a CODE_PHRASE.

CLASS ARCHETYPE_ONTOLOGY
Editors:T Beale Page 51 of 59 Date of Issue: 20 Jan 2005

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
2.9.4 ARCHETYPE_TERM Class

constraint_binding
(a_terminology_id, a_code:
String): String
require
has_terminology(a_terminology_
id)
constraint_codes.has(a_code)

Binding of constraint corresponding to
a_code in target external terminology
a_terminology_id, as a string, which is usu-
ally a formal query expression.

Invariant

terminologies_available_exists: terminologies_available /= void
term_codes_exists: term_codes /= void
constraint_codes_exists: constraint_codes /= void
term_bindings_exists: term_bindings /= void
constraint_bindings_exists: constraint_bindings /= void
term_attribute_names_valid: term_attribute_names /= void and then
term_attribute_names.has(“text”) and term_attribute_names.has(“description”)
concept_code_valid: term_codes.has (concept_code)
Parent_archetype_valid: parent_archetype /= Void and then
parent_archetype.description = Current

CLASS ARCHETYPE_TERM

Purpose Representation of any coded entity (term or constraint) in the archetype ontology.

Attributes Signature Meaning

code: String Code of this term.

items: Hash <String,
String>

Hash of keys (“text”, “description” etc) and
corresponding values.

Functions Signature Meaning

keys: Set<String> List of all keys used in this term.

Invariant code_valid: code /= void and then not code.is_empty

CLASS ARCHETYPE_ONTOLOGY
Date of Issue: 20 Jan 2005 Page 52 of 59 Editors:T Beale

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
A Domain-specific Extension Example

A.1 Overview
Domain-specific classes can be added to the archetype constraint model by inheriting from the class
C_DOMAIN_TYPE. This section provides an example of how domain-specific constraint classes are
added to the archetype model.

A.2 Scientific/Clinical Computing Types
FIGURE 11 shows the general approach, used to add constraint classes for commonly used concepts
in scientific and clinical computing, such as ‘ordinal’ (used heavily in medicine, particularly in
pathology testing), ‘coded term’ (also heavily used in clinical computing) and ‘quantity’, a general
scientific meansurement concept. The constraint types shown are C_ORDINAL, C_CODED_TEXT and
C_QUANTITY which can optionally be used in archetypes to replace the default constraint semantics
represented by the use of instances of C_OBJECT / C_ATTRIBUTE to constrain ordinals, coded terms
and quantities. The following model is intended only as an example, and does not try to define any
normative semantics of the particular constraint types shown.

C_DOMAIN_TYPE

clinical_archetypes

FIGURE 11 Example Domain-specific Package

C_ORDINAL C_CODED_TEXT
terminology: String
code_list: List<String>
reference: String

C_QUANTITY
property: String

C_QUANTITY_ITEM
magnitude: Interval<Real>
units: String

list 0..*
ORDINAL
symbol: CODE_PHRASE
value: Integer

list 0..*
Editors:T Beale Page 53 of 59 Date of Issue: 20 Jan 2005

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
Date of Issue: 20 Jan 2005 Page 54 of 59 Editors:T Beale

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
B Using Archetypes with Diverse Reference Models

B.1 Overview
The archetype model described in this document can be used with any reference model which is
expressed in UML or a similar object-oriented formalism. It can also be used with E/R models. The
following section describes is use a number of reference models used in clinical computing.

B.2 Clinical Computing Use
To Be Continued:

• data types
• class naming
• domain archetype semantics versus LCD semantics of exchange models
• mapping from C_DOMAIN_TYPE subtypes into various RMs

B.2.1 openEHR

B.2.2 CEN ENV13606

B.2.3 HL7 Clinical Document Architecture (CDA)

B.2.4 HL7v3 RIM
Editors:T Beale Page 55 of 59 Date of Issue: 20 Jan 2005

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
Date of Issue: 20 Jan 2005 Page 56 of 59 Editors:T Beale

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1
C References
Publications
1 Beale T. Archetypes: Constraint-based Domain Models for Future-proof Information Systems.

OOPSLA 2002 workshop on behavioural semantics.
Available at http://www.deepthought.com.au/it/archetypes.html.

2 Beale T. Archetypes: Constraint-based Domain Models for Future-proof Information Systems. 2000.
Available at http://www.deepthought.com.au/it/archetypes.html.

3 Beale T, Heard S. The Archetype Definition Language (ADL). See http://www.openehr.org/re-
positories/spec-dev/latest/publishing/architecture/archetypes/lan-
guage/ADL/REV_HIST.html.

4 Heard S, Beale T. Archetype Definitions and Principles. See http://www.openehr.org/reposi-
tories/spec-dev/latest/publishing/architecture/archetypes/princi-
ples/REV_HIST.html.

5 Heard S, Beale T. The openEHR Archetype System. See http://www.openehr.org/reposito-
ries/spec-dev/latest/publishing/architecture/archetypes/system/REV_HIST.ht-
ml.

6 Rector A L. Clinical Terminology: Why Is It So Hard? Yearbook of Medical Informatics 2001.
7 W3C. OWL - The Web Ontology Language.

See http://www.w3.org/TR/2003/CR-owl-ref-20030818/.
8 Horrocks et al. An OWL Abstract Syntax.

See http://www.w3.org/xxxx/.

Resources
9 openEHR. EHR Reference Model. See http://www.openehr.org/repositories/spec-

dev/latest/publishing/architecture/top.html.
10 OMG. The Object Constraint Language 2.0. Available at http://www.omg.org/cgi-

bin/doc?ptc/2003-10-14.
Editors:T Beale Page 57 of 59 Date of Issue: 20 Jan 2005

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

http://www.deepthought.com.au/it/archetypes.html
http://www.deepthought.com.au/it/archetypes.html
http://www.openehr.org/repositories/spec-dev/latest/publishing/architecture/archetypes/system/REV_HIST.html
http://www.openehr.org/repositories/spec-dev/latest/publishing/architecture/archetypes/system/REV_HIST.html
http://www.openehr.org/repositories/spec-dev/latest/publishing/architecture/archetypes/system/REV_HIST.html
http://www.openehr.org/repositories/spec-dev/latest/publishing/architecture/archetypes/principles/REV_HIST.html
http://www.openehr.org/repositories/spec-dev/latest/publishing/architecture/archetypes/principles/REV_HIST.html
http://www.openehr.org/repositories/spec-dev/latest/publishing/architecture/archetypes/principles/REV_HIST.html
http://www.openehr.org/repositories/spec-dev/latest/publishing/architecture/archetypes/language/ADL/REV_HIST.html
http://www.openehr.org/repositories/spec-dev/latest/publishing/architecture/archetypes/language/ADL/REV_HIST.html
http://www.openehr.org/repositories/spec-dev/latest/publishing/architecture/archetypes/language/ADL/REV_HIST.html
http://www.w3.org/TR/2003/CR-owl-ref-20030818/
http://www.w3.org/TR/2003/CR-owl-ref-20030818/
http://www.openehr.org/repositories/spec-dev/latest/publishing/architecture/top.html
http://www.openehr.org/repositories/spec-dev/latest/publishing/architecture/top.html
http://www.omg.org/cgi-bin/doc?ptc/2003-10-14
http://www.omg.org/cgi-bin/doc?ptc/2003-10-14

The Archetype Object Model
Rev 0.5.1
Date of Issue: 20 Jan 2005 Page 58 of 59 Editors:T Beale

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model
Rev 0.5.1

Editors:T Beale Page 59 of 59 Date of Issue: 20 Jan 2005

© 2004 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

END OF DOCUMENT

	The Archetype Object Model
	Copyright Notice
	Amendment Record
	Trademarks

	1 Introduction
	1.1 Purpose
	1.2 Background
	1.2.1 What is an Archetype?
	1.2.2 Context
	1.2.3 Tools

	2 The Archetype Object Model
	2.1 Design Background
	2.2 Package Structure
	2.3 Model Overview
	2.3.1 Archetypes as Objects
	2.3.2 The Archetype Ontology
	2.3.3 Archetype Specialisation
	2.3.4 Archetype Composition

	2.4 The Archetype Package
	2.4.1 Overview
	2.4.2 Natural Languages and Translation
	2.4.3 ARCHETYPE Class
	2.4.4 TRANSLATION_DETAILS Class
	2.4.5 VALIDITY_KIND Class

	2.5 Archetype Description Package
	2.5.1 Making Changes to Archetypes
	2.5.2 ARCHETYPE_DESCRIPTION Class
	2.5.3 ARCHETYPE_DESCRIPTION_ITEM Class
	2.5.4 AUDIT_DETAILS Class

	2.6 Constraint Model Package
	2.6.1 Overview
	2.6.2 Semantics
	All Node Types
	Attribute Nodes
	Primitive Types
	Constraint References
	Assertions
	Node_id and Paths
	Domain-specific Extensions
	Assumed Values

	2.6.3 ARCHETYPE_CONSTRAINT Class
	2.6.4 C_ATTRIBUTE Class
	2.6.5 C_SINGLE_ATTRIBUTE Class
	2.6.6 C_MULTIPLE_ATTRIBUTE Class
	2.6.7 CARDINALITY Class
	2.6.8 C_OBJECT Class
	2.6.9 C_COMPLEX_OBJECT Class
	2.6.10 ARCHETYPE_SLOT Class
	2.6.11 ARCHETYPE_INTERNAL_REF Class
	2.6.12 CONSTRAINT_REF Class
	2.6.13 C_PRIMITIVE_OBJECT Class
	2.6.14 C_DOMAIN_TYPE Class

	2.7 The Assertion Package
	2.7.1 Overview
	2.7.2 Semantics
	2.7.3 ASSERTION Class
	2.7.4 EXPR_ITEM Class
	2.7.5 EXPR_LEAF Class
	2.7.6 EXPR_OPERATOR Class
	2.7.7 EXPR_UNARY_OPERATOR Class
	2.7.8 EXPR_BINARY_OPERATOR Class
	2.7.9 OPERATOR_KIND Class

	2.8 The Primitive Package
	2.8.1 C_BOOLEAN Class
	2.8.2 C_STRING Class
	2.8.3 C_INTEGER Class
	2.8.4 C_REAL Class
	2.8.5 C_DATE Class
	2.8.6 C_TIME Class
	2.8.7 C_DATE_TIME Class
	2.8.8 C_DURATION Class

	2.9 Ontology Package
	2.9.1 Overview
	2.9.2 Semantics
	Specialisation Depth
	Term and Constraint Definitions

	2.9.3 ARCHETYPE_ONTOLOGY Class
	2.9.4 ARCHETYPE_TERM Class

	A Domain-specific Extension Example
	B Using Archetypes with Diverse Reference Models
	C References
	Publications
	Resources

