
Release 1 .0 .1
openEHR Architecture

Architecture Overview

Keywords: EHR, reference model, architecture, openehr

Editors: {T Beale, S Heard}a

a. Ocean Informatics

Revision: 1.1 Pages: 87 Date of issue: 12 Apr 2007
© 2003-2007 The openEHR Foundation.

The openEHR Foundation is an independent, non-profit community, facilitating the sharing of
health records by consumers and clinicians via open-source, standards-based implementations.

Founding
Chairman

David Ingram, Professor of Health Informatics,
CHIME, University College London

Founding
Members

Dr P Schloeffel, Dr S Heard, Dr D Kalra, D Lloyd, T Beale

email: info@openEHR.org web: http://www.openEHR.org

http://www.openEHR.org

Architecture Overview
Rev 1.1
Copyright Notice

© Copyright openEHR Foundation 2001 - 2007
All Rights Reserved

1. This document is protected by copyright and/or database right throughout the
world and is owned by the openEHR Foundation.

2. You may read and print the document for private, non-commercial use.
3. You may use this document (in whole or in part) for the purposes of making

presentations and education, so long as such purposes are non-commercial and
are designed to comment on, further the goals of, or inform third parties
about, openEHR.

4. You must not alter, modify, add to or delete anything from the document you
use (except as is permitted in paragraphs 2 and 3 above).

5. You shall, in any use of this document, include an acknowledgement in the form:
"© Copyright openEHR Foundation 2001-2007. All rights reserved. www.openEHR.org"

6. This document is being provided as a service to the academic community and on
a non-commercial basis. Accordingly, to the fullest extent permitted under
applicable law, the openEHR Foundation accepts no liability and offers no
warranties in relation to the materials and documentation and their content.

7. If you wish to commercialise, license, sell, distribute, use or otherwise copy
the materials and documents on this site other than as provided for in
paragraphs 1 to 6 above, you must comply with the terms and conditions of the
openEHR Free Commercial Use Licence, or enter into a separate written agreement
with openEHR Foundation covering such activities. The terms and conditions of
the openEHR Free Commercial Use Licence can be found at
http://www.openehr.org/free_commercial_use.htm
Date of Issue: 12 Apr 2007 Page 2 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview
Rev 1.1
Amendment Record

Issue Details Raiser Completed

R E L E A S E 1.0.1

1.1 CR-000200. Correct package names in RM diagram.
CR-000130: Correct security details in LOCATABLE and ARCHE-
TYPED classes.
CR-000203: Release 1.0 explanatory text improvements.
Improved path explanation. Slight re-ordering of main head-
ings.

Path shortcuts.
Added configuration management and versioning material
from Common IM.
Added section on ontological landscape.
Added section on aims.
Added section on systems architectures.
Added section on security.
Added section on system integration.
Added section on terminology.

D Lloyd
T Beale

T Beale,
G Grieve,

T Shannon,
H vander

Linder
H Frankel
T Beale

T Beale
T Beale
T Beale
T Beale
T Beale
T Beale,
S Heard

12 Apr 2007

R E L E A S E 1.0

1.0 Initial Writing - content taken from Roadmap document.
CR-000147. Make DIRECTORY Re-usable
CR-000167. Move AOM description package to resource pack-
age in Common IM.
CR-000185: Improved EVENT model.

T Beale 29 Jan 2006
Editors:{T Beale, S Heard} Page 3 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview
Rev 1.1
Acknowledgements
The work reported in this paper has been funded by the University College, London; Ocean Informat-
ics, Australia.

CORBA is a trademark of the Object Management Group

.Net is a trademark of Microsoft Corporation

LEGO® is a registered trademark of The LEGO Group.
Date of Issue: 12 Apr 2007 Page 4 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview
Rev 1.1
1 Introduction.. 7
1.1 Purpose...7
1.2 Status..7
1.3 Peer review ..7

2 Overview ... 9
2.1 The openEHR Specification Project ..9

3 Aims of the openEHR Architecture11
3.1 Overview..11
3.2 Clinical Aims ...12
3.3 Deployment Environments ..13

4 Design Principles.. 15
4.1 Ontological Separation ..15
4.2 Separation of Responsibilities ...18
4.3 Separation of Viewpoints...18

5 openEHR Package Structure .. 21
5.1 Overview..21
5.2 Reference Model (RM)..22
5.2.1 Package Overview ...22
5.3 Archetype Model (AM) ...24
5.4 Service Model (SM)...25

6 Design of the openEHR EHR.. 27
6.1 The EHR System ...27
6.2 Top-level Information Structures ...27
6.3 The EHR ..28
6.4 Entries and “clinical statements” ...29
6.5 Managing Interventions ...32
6.6 Time in the EHR ..34
6.7 Language..34

7 Security and Confidentiality ... 37
7.1 Requirements ...37
7.2 Threats to Security and Privacy ...38
7.3 Solutions Provided by openEHR ...39
7.3.1 Overview..39
7.3.2 Security Policy...39
7.3.3 Integrity..41
7.3.4 Anonymity ...43
7.4 Access Control ...43

8 Versioning ... 45
8.1 Overview..45
8.2 The Configuration Management Paradigm..45
8.2.1 Organisation of the Repository..46
8.2.2 Change Management ...46
8.3 Managing Changes in Time ...47
8.3.1 General Model of a Change-controlled Repository.......................48
8.4 The “Virtual Version Tree” ..49
Editors:{T Beale, S Heard} Page 5 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview
Rev 1.1
9 Identification .. 51
9.1 Identification of the EHR .. 51
9.2 Identification of Items within the EHR ... 51
9.2.1 General Scheme... 51
9.2.2 Levels of Identification ... 51

10 Archetypes and Templates .. 55
10.1 Overview ... 55
10.2 Archetype Formalisms and Models... 56
10.2.1 Overview ... 56
10.2.2 Design-time Relationships between Archetypes........................... 56
10.3 Relationship of Archetypes and Templates to Data 57
10.4 Archetype-enabling of Reference Model Data.................................... 57
10.5 Archetypes, Templates and Paths .. 58
10.6 Archetypes and Templates at Runtime .. 58
10.6.1 Overview ... 58
10.6.2 Deploying Archetypes and Templates... 59
10.6.3 Validation during Data Capture... 60
10.6.4 Querying.. 61
10.7 The openEHR Archteypes... 62

11 Paths and Locators .. 63
11.1 Overview ... 63
11.2 Paths .. 63
11.2.1 Basic Syntax.. 63
11.2.2 Predicate Expressions.. 64
11.2.3 Paths within Top-level Structures.. 65
11.2.4 Data Paths and Uniqueness ... 65
11.3 EHR URIs.. 68
11.3.1 EHR Reference URIs .. 68

12 Terminology in openEHR.. 71
12.1 Overview ... 71
12.2 Terminology to Support the Reference Model 71
12.3 Archetype Internal Terminology ... 71
12.4 Binding to External Terminologies ... 73
12.5 Querying using External Terminologies.. 74

13 Deployment... 77
13.1 5-tier System Architecture... 77

14 Integrating openEHR with other Systems........................... 79
14.1 Overview ... 79
14.2 Integration Archetypes .. 79
14.3 Data Conversion Architecture ... 80

15 Relationship to Standards ... 81
16 Implementation Technology Specifications 83
16.1 Overview ... 83

A References... 85
Date of Issue: 12 Apr 2007 Page 6 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Introduction
Rev 1.1
1 Introduction

1.1 Purpose
This document provides an overview of the openEHR architecture in terms of a model overview, key
global semantics, deployment and integration architectures, relationship to published standards, and
finally the approach to building Implementation Technology Specifications (ITSs). Semantics spe-
cific to each information, archetype and service model are described in the relevant model.

The intended audience includes:

• Standards bodies producing health informatics standards
• Software development groups using openEHR
• Academic groups using openEHR
• The open source healthcare community

This document is the key technical overview of openEHR, and should be read before all other techni-
cal documents.

1.2 Status
This document is under development, and is published as a proposal for input to standards processes
and implementation works.

This document is available at http://svn.openehr.org/specification/TAGS/Release-
1.0/publishing/architecture/overview.pdf.

The latest version of this document can be found at http://svn.openehr.org/specifica-
tion/TRUNK/publishing/architecture/overview.pdf.

New versions are announced on openehr-announce@openehr.org.

Blue text indicates sections under active development.

1.3 Peer review
Areas where more analysis or explanation is required are indicated with “to be continued” paragraphs
like the following:

To Be Continued: more work required

Reviewers are encouraged to comment on and/or advise on these paragraphs as well as the main con-
tent. Please send requests for information to info@openEHR.org. Feedback should preferably be
provided on the mailing list openehr-technical@openehr.org, or by private email.
Editors:{T Beale, S Heard} Page 7 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

http://svn.openehr.org/specification/TRUNK/publishing/architecture/overview.pdf
http://svn.openehr.org/specification/TRUNK/publishing/architecture/overview.pdf
http://svn.openehr.org/specification/TAGS/Release-1.0/publishing/architecture/overview.pdf
http://svn.openehr.org/specification/TAGS/Release-1.0/publishing/architecture/overview.pdf
mailto:openehr-technical@openehr.org
mailto:openehr-announce@openehr.org
mailto:info@gehr.org
mailto:openehr-technical@openehr.org

Introduction Architecture Overview
Rev 1.1
Date of Issue: 12 Apr 2007 Page 8 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Overview
Rev 1.1
2 Overview
This document provides an overview of the openEHR architecture. It commences with a description
of the specification project, followed by an overview of the reference model structure and packages.
Key global semantics including security, archetyping, identification, version and paths are then
described. The relationship to published standards is indicated, and finally, the approach to building
Implementation Technology Specifications (ITSs) is outlined.

2.1 The openEHR Specification Project
FIGURE 1 illustrates the openEHR Specification Project. This project is responsible for developing
the specifications on which the openEHR Health Computing Platform is based. The relationships
between the parts of the computing platform and the specifications are indicated on the diagram. The
project deliverables include requirements, abstract specifications, implementation technology specifi-
cations (ITSs), computable expressions and conformance criteria.

The abstract specifications consist of the Reference Model (RM), the Service Model (SM) and Arche-
type Model (AM). The first two correspond to the ISO RM/ODP information and computational
viewpoints respectively. The latter formalises the bridge between information models and knowledge
resources.

The abstract specifications published by openEHR are defined using the UML notation and formal
textual class specifications. These models constitute the primary references for all openEHR seman-
tics. The presentation style of these abstract specifications is deliberately intended to be clear and

FIGURE 1 openEHR Specification project

RM AM SM

abstract
specifications

ITSs computable

conformance
The openEHR Health Computing Platform
Editors:{T Beale, S Heard} Page 9 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Overview Architecture Overview
Rev 1.1
semantically close to the ideas being communicated. Accordingly, the specifications do not follow
idioms or limitations of particular programming languages, schema languages or other formalisms.

The abstract specifications are also available in a tool-oriented computable UML format in order to
enable development of software and systems. The computable expressions for all practical purposes
can be assumed as being a lossless rendition of the published abstract specifications.

The implementation technology specifications on the other hand correspond to the expression of
abstract specifications in various programming and schema languages, each of which represents an
imperfect and usually partial transformation from the specification models. There are numerous
implementation technologies, ranging from programming languages, serial formalisms such as XML,
to database and distributed object interfaces. Each of these has its own limits and strengths. The
approach to implementing any of the openEHR abstract models in a given implementation technol-
ogy is to firstly define an ITS for the particular technology, then to use it to formally map the abstract
models into expressions in that technology.
Date of Issue: 12 Apr 2007 Page 10 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Aims of the openEHR Architecture
Rev 1.1
3 Aims of the openEHR Architecture

3.1 Overview
This section provides a brief overview of the requirements underpinning the openEHR architecture.
The openEHR architecture embodies 15 years of research from numerous projects and standards from
around the world. It has been designed based on requirements captured over many years.

Because the architecture is highly generic, and particularly due to being archetype-driven, it satisfies
many requirements outside the original concept of the “clinical EHR”. For example, the same refer-
ence architecture can be used for veterinary health or even “care” of public infrastructure or listed
buildings. This is due to the fact that the reference model embodies only concepts relating to “service
and administrative events relating to a subject of care”; it is in archetypes and templates that specifics
of the kinds of care events and subjects of care are defined. In another dimension, although one of the
requirements for the openEHR EHR was a “patient-centric, longitudinal, shared care EHR”, it is not
limited to this, and can be used in purely episodic, specialist situations, e.g. as a radiology department
record system. Requirements for various flavours of “health care record” can be categorised accord-
ing to the two dimensions, scope, and kind of subject, as shown in FIGURE 2.

In this figure, each bubble represents a set of requirements, being a superset of all requirements of
bubbles contained within it. Requirements for a generic record of care for any kind of subject in a
local deployment are represented by the top left bubble. The subsequent addition of requirements cor-
responding to living subjects and then human subjects is represented by the bubbles down the left side
of the diagram. The requirements represented by the largest bubble on the left hand side correspond to
“local health records for human care”, such as radiology records, hospital EPRs and so on. Additional
sets of requirements represented by wider bubbles going across the diagram correspond to extending
the scope of the content of the care record first to a whole subject (resulting in a patient-centric, longi-
tudinal health record) and then to populations or cohorts of subjects, as done in population health and
research. From the (human) healthcare point of view, the important requirements groups extend all
the way to the bottom row of the diagram.

FIGURE 2 Structure of Requirements met by openEHR

basic, generic
record of care

living

human departmental EPR

path lab record
hospital EPR

vet clinic EPR

community care EHR
Integrated Care EHR

building service

national emerg. rec clinical research

health insurance view

vet research study

agricultural reporting

any

subject

subject

subject

kind of
subject

place of
care delivery

1 subject

racehorse EHR

zoo animal EHR

many subjects

(determined
by archetypes)

scope of content

building maintenance
record, 1 buildingrecord, 1 supplier

national estate
survey

(determined by deployment)
Editors:{T Beale, S Heard} Page 11 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Aims of the openEHR Architecture Architecture Overview
Rev 1.1
Going down the diagram, requirements corresponding to increasing specificity of subject of care
(from “any” to “human”) are mostly implemented in openEHR by the use of archetypes. Going across
the diagram, the requirements corresponding to increasing scope of record content (from episodic to
population) are mainly expressed in different deployments, generally going from standalone to a
shared interoperable form. One of the key aspirations for EHRs today is the “integrated care record”
sought by many health authorities today1, which provides an informational framework for integrated
shared care.

As a result of the approach taken by openEHR, components and applications built to satisfy the
requirements of an integrated shared care record can also be deployed as (for example) an episodic
radiology record system.

Some of the key requirements developed during the evolution of GEHR to openEHR are listed in the
following sections, corresponding to some of the major requirements groups of FIGURE 2.

Generic Care Record Requirements
The openEHR requirements include the following, corresponding to a basic, generic record of care:

• prioritisation of the patient / carer interaction (over e.g. research use of the record);
• suitable for all care settings (primary, acute etc.);
• medico-legal faithfulness, traceability, audit-trailing;
• technology & data format independence;
• highly maintainable and flexible software;
• support for clinical data structures: lists, tables, time-series, including point and interval

events.

Health Care Record (EPR)
The following requirements addressed in openEHR correspond to a local health record, or EPR:

• support for all aspects of pathology data, including normal ranges, alternative systems of
units etc.;

• supports all natural languages, as well as translations between languages in the record;
• integrates with any/multiple terminologies.

Shared Care EHR
The following requirements addressed in openEHR correspond to an integrated shared care EHR:

• support for patient privacy, including anonymous EHRs;
• facilitate sharing of EHRs via interoperability at data and knowledge levels;
• compatibility with CEN 13606, Corbamed, and messaging systems;
• support semi-automated and automated distributed workflows.

3.2 Clinical Aims
From a more specifically clinical care perspective (rather than a record-keeping perspective), the fol-
lowing requirements have been identified during the development of openEHR:

1. The Integrated Care EHR is described in ISO/TR 20514 (2005)
Date of Issue: 12 Apr 2007 Page 12 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Aims of the openEHR Architecture
Rev 1.1
• The need for a patient-centric, lifelong electronic health record that entails a holistic view of
patient needs as opposed to niche problem-solving and decision-support techniques for lim-
ited diagnostic purposes;

• Integration of different views of the patient (GP, emergency and acute care, pathology, radi-
ology, computerised patient-order entry, etc.) with the vast body of available knowledge
resources (terminologies, clinical guidelines and computerised libraries);

• Clinical decision-support to improve patient safety and reduced costs through repeated med-
ical investigations;

• Access to standards-based computing applications.

The Integrated Care EHR holds great promise: to generalise and make widely available the benefits
of computerisation that have been demonstrated individually and in isolated settings. These can be
summarised as:

• Reducing adverse events arising from medication errors such as interactions, duplications or
inappropriate treatments and the flow-on costs associated with these;

• Improving the timely access to critical information and reduced clinician time searching for
information;

• Reducing the incidence of patients being overlooked in the healthcare system due to infor-
mation not being communicated;

• Reducing the duplication of investigations and other tests and procedures due to results not
being available in the local computing environment;

• Improved prevention and early detection, based on predictive risk factor analysis, which is
possible with quality EHR data;

• Improved decision making through decision support tools with access to the patient’s whole
EHR;

• Improving access to and computation of evidence based guidelines;
• Increasing targeted health initiatives known to be effective, based on patient criteria; and
• Reduced hospitalisations and readmissions.

One comprehensive statement of EHR requirements covering many of the above is the ISO Technical
Report 183081 for which an openEHR profile has been created2. The requirements summarised above
are described in more detail in the openEHR EHR Information Model document.

3.3 Deployment Environments
Ultimately any software and information architecture only provides utility when deployed. The archi-
tecture of openEHR is designed to support the construction of a number of types of system. One of
the most important, the integrated shared care health record is illustrated in FIGURE 3.

In this form, the openEHR services are added to the existing IT infrastructure to provide a shared,
secure health record for patients that are seen by any number of health providers in their community
context. openEHR-enabled systems can also be used to provide EMR/EPR functionality at provider
locations. Overall, a number of important categories of system can be implemented using openEHR
including the following:

1. see http://www.openehr.org/downloads/ISOEHRRequirements.zip
2. see http://svn.openehr.org/specification/TRUNK/publishing/require-
ments/iso18308_conformance.pdf
Editors:{T Beale, S Heard} Page 13 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

http://www.openehr.org/downloads/ISOEHRRequirements.zip
http://svn.openehr.org/specification/TRUNK/publishing/requirements/iso18308_conformance.pdf
http://svn.openehr.org/specification/TRUNK/publishing/requirements/iso18308_conformance.pdf

Aims of the openEHR Architecture Architecture Overview
Rev 1.1
• shared-care community or regional health service EHRs;
• summary EHRs at a national, state, province or similar level;
• small desktop GP systems;
• hospital EMRs;
• consolidated and summary EHRs in federation environments;
• legacy data purification and validation gateways;
• web-based secure EHR systems for mobile patients.

FIGURE 3 Community Shared-care Context

GP

local
hospital large

hospital

path
lab

imaging
lab

nursing

social
workers

home

aged care

shared EHR
longitudinal

patient-centred

secure

EPR

EPR

EPR

specialist
EPR

Summary EHR
Health Info

Location
Date of Issue: 12 Apr 2007 Page 14 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Design Principles
Rev 1.1
4 Design Principles
The openEHR approach to modelling information, services and domain knowledge is based on a
number of design principles, described below. The application of these principles lead to a separation
of the models of the openEHR architecture, and consequently, a high level of componentisation. This
leads to better maintainability, extensibility, and flexible deployment.

4.1 Ontological Separation
The most basic kind of distinction in any system of models is ontological, i.e. in the levels of abstrac-
tion of description of the real world. All models carry some kind of semantic content, but not all
semantics are the same, or even of the same category. For example, some part of the SNOMED-CT1

terminology describes types of bacterial infection, sites in the body, and symptoms. An information
model might specify a logical type Quantity. A content model might define the model of information
collected in an ante-natal examination by a physician. These types of “information” are qualitatively
different, and need to be developed and maintained separately within the overall model eco-system.
FIGURE 4 illustrates these distinctions, and indicates what parts are built directly into software and
databases.

This figure shows a primary separation between “ontologies of information” i.e. models of informa-
tion content, and “ontologies of reality” i.e. descriptions and classifications of real phenomena. These
two categories have to be separated because the type of authors, the representation and the purposes
are completely different. In health informatics, this separation already exists by and large, due to the
development of terminologies and classifications.

1. See http://www.snomed.org

FIGURE 4 The Ontological Landscape

ontologies of reality

classifications

descriptive terminologies

SNOMED-CT

ICDx
ICPC

domain content models

openEHR
Reference Model

openEHR archetypes
 & templates

ontologies of everything

mediate

process
descriptions

guidelines

LOINC

{limit of
application

(variable)

software
and DB

ontologies of information

information
models (stable)

openEHR
Service Model

languages of representation
UML

programming openEHR
Archetype Model

OWL{

schemas

generic
software

components
XML schema

languages

IM

openEHR
termin-

vocab

ology

}

}
languages
Editors:{T Beale, S Heard} Page 15 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

http://www.snomed.org

Design Principles Architecture Overview
Rev 1.1
A secondary ontological separation within the information side is shown between information models
and domain content models. The former category corresponds to semantics that are invariant across
the domain (e.g. basic data types like coded terms, data structures like lists, identifiers), while the lat-
ter corresponds to variable domain level content descriptions - descriptions of information structures
such as “microbiology result” rather than descriptions of actual phenomena in the real world (such as
infection by a microbe). This separation is not generally well understood, and historically, a great deal
of domain-level semantics has been hard-wired into the software and databases, leading to relatively
unmaintainable systems.

By clearly separating the three categories - information models, domain content models, and termi-
nologies - the openEHR architecture enables each to have a well-defined, limited scope and clear
interfaces. This limits the dependence of each on the other, leading to more maintainable and adapta-
ble systems.

Two-level Modelling and Archetypes
One of the key paradigms on which openEHR is based is known as “two-level” modelling, described
in [2]. Under the two-level approach, a stable reference information model constitutes the first level
of modelling, while formal definitions of clinical content in the form of archetypes and templates con-
stitute the second. Only the first level (the Reference Model) is implemented in software, significantly
reducing the dependency of deployed systems and data on variable content definitions. The only other
parts of the model universe implemented in software are highly stable languages/models of represen-
tation (shown at the bottom of FIGURE 4). As a consequence, systems have the possibility of being
far smaller and more maintainable than single-level systems. They are also inherently self-adapting,
since they are built to consume archetypes and templates as they are developed into the future.

Archetypes and templates also act as a well-defined semantic gateway to terminologies, classifica-
tions and computerised clinical guidelines. The alternative in the past has been to try to make systems
function solely with a combination of hard-wired software and terminology. This approach is flawed,
since terminologies don’t contain definitions of domain content (e.g. “microbiology result”), but
rather facts about the real world (e.g. kinds of microbes and the effects of infection in humans).

The use of archetyping in openEHR engenders new relationships between information and models, as
shown in FIGURE 5.

Reference Archetype
Model/Language

information

normal instance/

archetypes &

semantics of
constraint

semantic

FIGURE 5 Archetype Meta-architecture

conformance

 Model

class conformance expressed in

templates

ADL

user
creates

domain
creates

expert

terminology

use
used in controlled

by
Date of Issue: 12 Apr 2007 Page 16 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Design Principles
Rev 1.1
In this figure, “data” as we know it in normal information systems (shown on the bottom left) con-
forms in the usual way to an object model (top left). Systems engineered in the “classic” way (i.e. all
domain semantics are encoded somewhere in the software or database) are limited to this kind of
architecture. With the use of two-level modelling, runtime data now conform semantically to arche-
types as well as concretely to the reference model. All archetypes are expressed in a generic Arche-
type Definition Language (ADL).

The details of how archetypes and templates work in openEHR are described in Archetypes and Tem-
plates on page 55.

Consequences for Software Engineering
Two-level modelling significantly changes the dynamics of the systems development process. In the
usual IT-intensive process, requirements are gathered via ad hoc discussions with users (typically via
the well-known “use case” methodology), designs and models built from the requirements, imple-
mentation proceeds from the design, followed by testing and deployment and ultimately the mainte-
nance part of the lifecycle. This is usually characterised by ongoing high costs of implementation
change and/or a widening gap between system capabilities and the requirements at any moment. The
approach also suffers from the fact that ad hoc conversations with systems users nearly always fails to
reveal underlying content and workflow. Under the two-level paradigm, the core part of the system is
based on the reference and archetype models (includes generic logic for storage, querying, caching
etc.), both of which are extremely stable, while domain semantics are mostly delegated to domain
specialists who work building archetypes (reusable), templates (local use) and terminology (general
use). The process is illustrated in FIGURE 6. Within this process, IT developers concentrate on
generic components such as data management and interoperability, while groups of domain experts
work outside the software development process, generating definitions that are used by systems at
runtime.

Clearly applications cannot always be totally generic (although many data capture and viewing appli-
cations are); decision support, administrative, scheduling and many other applications still require
custom engineering. However, all such applications can now rely on an archetype- and template-
driven computing platform. A key result of this approach is that archetypes now constitute a technol-
ogy-independent, single-source expression of domain semantics, used to drive database schemas,

FIGURE 6 Two-level Software Engineering

data
store

System Model

schema

communication

information

defines

implemented in

runtime
system

technical development
environment

App

user

Reference

domain knowledge
environment

Archetype

domain

library
smallused for:

small

specialists

Archetype
Model/

Language

Terminology/
Ontology

terminology
development

develop once

Template
library

drives

- data capture
- validation
- querying

GUI
Editors:{T Beale, S Heard} Page 17 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Design Principles Architecture Overview
Rev 1.1
software logic, GUI screen definitions, message schemas and all other technical expressions of the
semantics.

4.2 Separation of Responsibilities
A second key design paradigm used in openEHR is that of separation of responsibilities within the
computing environment. Complex domains are only tractable if the functionality is first partitioned
into broad areas of interest, i.e. into a “system of systems” [6]. This principle has been understood in
computer science for a long time under the rubrics “low coupling”, “encapsulation” and “componen-
tisation”, and has resulted in highly successful frameworks and standards, including the OMG’s
CORBA specifications and the explosion of object-oriented languages, libraries and frameworks.
Each area of functionality forms a focal point for a set of models formally describing that area, which,
taken together usually correspond to a distinct information system or service.

FIGURE 7 illustrates a notional health information environment containing numerous services, each
denoted by a bubble. Typical connections are indicated by lines, and bubbles closer to the centre cor-
respond to services closer to the core needs of clinical care delivery, such as the EHR, terminology,
demographics/identification and medical reference data. Of the services shown on the diagram,
openEHR currently provides specifications only for the more central ones, including EHR and Demo-
graphics.

Since there are standards available for some aspects of many services, such as terminology, image
formats, messages, EHR Extracts, service-based interoperation, and numerous standards for details
such as date/time formats and string encoding, the openEHR specifications often act as a mechanism
to integrate existing standards.

4.3 Separation of Viewpoints
The third computing paradigm used in openEHR is a natural consequence of the separation of respon-
sibilities, namely the separation of viewpoints. When responsibilities are divided up among distinct
components, it becomes necessary to define a) the information that each processes, and b) how they
will communicate. These two aspects of models constitute the two central “viewpoints” of the ISO
RM/ODP model [4], marked in bold in the following:

Enterprise: concerned with the business activities, i.e. purpose, scope and policies of the
specified system.

Information: concerned with the semantics of information that needs to be stored and processed
in the system.

Computational: concerned with the description of the system as a set of objects that interact at
interfaces - enabling system distribution.

Engineering: concerned with the mechanisms supporting system distribution.

Technological: concerned with the detail of the components from which the distributed system
is constructed.

The openEHR specifications accordingly include an information viewpoint - the openEHR Reference
Model - and a computational viewpoint - the openEHR Service Model. The Engineering viewpoint
corresponds to the Implementation Technology Specification (ITS) models of openEHR (see Imple-
mentation Technology Specifications on page 83), while the Technological viewpoint corresponds to
the technologies and components used in an actual deployment. An important aspect of the division
into viewpoints is that there is generally not a 1:1 relationship between model specifications in each
Date of Issue: 12 Apr 2007 Page 18 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Acce
ss

Cont
rol

Cl
ini

ca
l M

od
els

(a
rch

ety
pe

s)

De
mo

gr
ap

hic
s

EH
R

Te
rm

s
Cl

ini
ca

l

Ad
mi

nis
tra

tio
n

Pa
yo

r

De
cis

ion
Su

pp
or

t

Re
so

ur
ce

Lo
ca

tio
n

Secu
rity

ID
Se

rvi
ce da

ta

Gu
ide

lin
es

 &
Pr

oto
co

ls

Bi
llin

g

PR
OV

ID
ER

PO
RT

AL

Te
lem

ed
ici

ne

MI
NI

MA
LL

Y

FU
LL

Y

on
lin

e
on

lin
e

vo
ca

bu
lar

y
re

po
sit

or
ies

on
lin

e
pr

es
cri

bin
g,

int
er

ac
tio

ns
 et

c

PR
OV

ID
ER

OT
HE

R

gu
ide

lin
e

on
lin

e m
od

el
re

po
sit

or
ies

Lo
ca

l
Mo

de
llin

g

EV
EN

TS
 /

UP
DA

TE

W
OR

KF
LO

W

on
lin

e d
em

og
ra

ph
ic

se
rvi

ce
s

FI
G

U
R

E
 7

 A
 H

ea
lth

 In
fo

rm
at

io
n

E
nv

iro
nm

en
t

Pa
tie

nt QU
ER

Y

Re
alt

im
e

Ga
te

wa
y

Re
fer

en
ce

MU
LT

IM
ED

IA
/

GE
NE

TIC
S

Cl
ien

t

Mo
bil

e

Vi
tal

 S
ign

s

IN
VE

ST
IG

AT
IO

NS

Me
ss

ag
in

g
Ga

te
wa

y

Mo
nit

or
s

EN
TE

RP
RI

SE FU
NC

TI
ON

AL

FU
NC

TI
ON

AL

IN
VE

ST
-

IG
AT

IO
NS

EN
TE

RP
RI

SE

Al
lie

d
He

alt
h

Da
ta

W
ar

eh
ou

se

Da
ta

W
ar

eh
ou

se

Da
ta

W
ar

eh
ou

se

SE
CO

ND
AR

Y
US

ER
(g

ov
t, r

es
ea

rch
ep

ide
mi

olo
gy

)
Im

ag
ing

El
ec

tro
ph

ys
iol

og
y

Pa
tho

log
y

re
po

sit
or

ies

Int
er

ac
tio

ns
De

c.
Su

pp
.

Tr
igg

er
s &

No
tifi

ca
tio

nPa
tie

nt

copyright © 2001-2005 Thomas Beale

kn
ow

led
ge

co
mp

on
en

t
op

er
ati

on
al

co
mp

on
en

t

co
mm

un
ica

tio
ns

co
mp

on
en

t

KE
Y

Design Principles Architecture Overview
Rev 1.1
viewpoint. For example, there might be a concept of “health mandate” (a CEN ENV13940 Continuity
of Care concept) in the enterprise viewpoint. In the information viewpoint, this might have become a
model containing many classes. In the computational viewpoint, the information structures defined in
the information viewpoint are likely to recur in multiple services, and there may or may not be a
“health mandate” service. The granularity of services defined in the computational viewpoint corre-
sponds most strongly to divisions of function in an enterprise or region, while the granularity of com-
ponents in the information view points corresponds to the granularity of mental concepts in the
problem space, the latter almost always being more fine-grained.
Date of Issue: 12 Apr 2007 Page 20 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview openEHR Package Structure
Rev 1.1
5 openEHR Package Structure

5.1 Overview
FIGURE 8 illustrates the package structure of the openEHR formal specifications. Three major pack-
ages are defined: rm, am and sm. All packages defining detailed models appear inside one of these
outer packages, which may also be thought of as namespaces. They are conceptually defined within
the org.openehr namespace, which can be represented in UML as further packages. In some imple-
mentation technologies (e.g. Java), the org.openehr namespace may actually be used within pro-
gram texts.

One of the important design aims of openEHR is to provide a coherent, consistent and re-usable type
system for scientific and health computing. Accordingly, the ‘core’ of the RM (bottom-most layers)
provides identifiers, data types, data structures and various common design patterns that can be re-
used ubiquitously in the upper layers of the RM, and equally in the AM and SM packages. FIGURE 9
illustrates the relationships between the packages. Dependencies only exist from higher packages to
lower packages.

FIGURE 8 Global Package Structure of openEHR

rm

org

openehr

sm am

FIGURE 9 openEHR Package Structure

Data Structures
Data Types

DemographicEHR

Security

EHR Extract

virtual EHR

Archetype OM

Support (identifiers, terminology access)

AM

RM

SM EHR
service

archetype
service

demographic
service

terminology
service

{core

Common{patterns

{domain

{

}Integration

Composition openEHR Archetype Profile

Template OM

ADL
Editors:{T Beale, S Heard} Page 21 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

openEHR Package Structure Architecture Overview
Rev 1.1
5.2 Reference Model (RM)
Each package defines a local context for definition of classes. FIGURE 10 illustrates the RM package
structure. An informal division into “domain”, “patterns” and “core” is shown. The packages in the
latter group are generic, and are used by all openEHR models, in all the outer packages. Together,
they provide identification, access to knowledge resources, data types and structures, versioning
semantics, and support for archetyping. The packages in the former group define the semantics of
enterprise level health information types, including the EHR and demographics.

Each outer package in FIGURE 10 corresponds to one openEHR specification document1, document-
ing an “information model” (IM). The package structure will normally be replicated in all ITS expres-
sions, e.g. XML schema, programming languages like Java, C# and Eiffel, and interoperability
definitions like WSDL, IDL and .Net.

5.2.1 Package Overview
The following sub-sections provide a brief overview of the RM packages.

Support Information Model
This package describes the most basic concepts, required by all other packages, and is comprised of
the Definitions, Identification, Terminology and Measurement packages. The semantics defined in
these packages allow all other models to use identifiers and to have access to knowledge services like
terminology and other reference data. The support package includes the special package
assumed_types, describing what basic types are assumed by openEHR in external type systems;
this package is a guide for integrating openEHR models proper into the type systems of implementa-
tion technologies.

Data Types Information Model
A set of clearly defined data types underlies all other models, and provides a number of general and
clinically specific types required for all kinds of health information. The following categories of data
types are defined in the data types reference model.

Text: plain text, coded text, paragraphs.
Quantities: any ordered type including ordinal values (used for representing symbolic ordered

values such as “+”, “++”, “+++”), measured quantities with values and units, and so on.
Date/times: date, time, date-time types, and partial date/time types.
Encapsulated data: multimedia, parsable content.
Basic types: boolean, state variable.

Data Structures Information Model
In most openEHR information models, generic data structures are used for expressing content whose
particular structure will be defined by archetypes. The generic structures are as follows.

Single: single items, used to contain any single value, such as a height or weight.
List: linear lists of named items, such as many pathology test results.
Table: tabular data, including unlimited and limited length tables with named and ordered

columns, and potentially named rows.
Tree: tree-shaped data, which may be conceptually a list of lists, or other deep structure.

1. with the exception of the EHR and Composition packages, which are both described in the EHR Reference
Model document.
Date of Issue: 12 Apr 2007 Page 22 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview openEHR Package Structure
Rev 1.1
FIGURE 10 Structure of org.openehr.rm package

ehr

composition

navigation entry

content

terminology

ehr_extract

generic

demographic

archetyped

common

support

core

measurement identification

text

data_types

basic

quantity

assumed types Integer
Boolean

String
Real Character

Interval<T>
Set<T>

List<T>

domain

date_time time_
specification uri encapsulated

history

data_structures
item_structure

representation

change_
control directory resource

openEHR
Support

Terminology

definitions

patterns

access_

security

control

integration
Editors:{T Beale, S Heard} Page 23 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

openEHR Package Structure Architecture Overview
Rev 1.1
History: time-series structures, where each time-point can be an entire data structure of any
complexity, described by one of the above structure types. Point and interval samples are
supported.

Common Information Model
Several concepts recur in higher level packages. The classes LOCATABLE and ARCHETYPED provide
the link between information and archetype models. The classes ATTESTATION and PARTICIPA-
TION are generic domain concepts that appear in various reference models. The change_control
package defines a formal model of change management and versioning which applies to any service
that needs to be able to supply previous states of its information, in particular the demographic and
EHR services. The key semantics of versioning in openEHR are described in section 8 on page 45.

Security Information Model
The Security Information Model defines the semantics of access control and privacy setting for infor-
mation in the EHR.

EHR Information Model
The EHR IM defines the containment and context semantics of the concepts EHR, COMPOSITION,
SECTION, and ENTRY. These classes are the major coarse-grained components of the EHR, and corre-
spond directly to the classes of the same names in CEN EN13606:2005 and fairly closely to the “lev-
els” of the same names in the HL7 Clinical Document Architecture (CDA) release 2.0.

EHR Extract Information Model
The EHR Extract IM defines how an EHR extract is built from COMPOSITIONs, demographic, and
access control information from the EHR. A number of Extract variations are supported, including
“full openEHR”, a simplified form for integration with CEN EN13606, and an openEHR/openEHR
synchronisation Extract.

Integration Information Model
The Integration model defines the class GENERIC_ENTRY, a subtype of ENTRY used to represent free-
form legacy or external data as a tree. This Entry type has its own archetypes, known as “integration
archetypes”, which can be used in concert with clinical archetypes as the basis for a tool-based data
integration system. See section 14 on page 79 for more details.

Demographics Information Model
The demographic model defines generic concepts of PARTY, ROLE and related details such as contact
addresses. The archetype model defines the semantics of constraint on PARTYs, allowing archetypes
for any type of person, organisation, role and role relationship to be described. This approach pro-
vides a flexible way of including the arbitrary demographic attributes allowed in the OMG HDTF
PIDS standard.

Workflow Information Model (future)
Workflow is the dynamic side of clinical care, and consists of models to describe the semantics of
processes, such as recalls, as well as any care process resulting from execution of guidelines.

5.3 Archetype Model (AM)
The openEHR am package contains the models necessary to describe the semantics of archetypes and
templates, and their use within openEHR. These include ADL, the Archetype Definition Language
(expressed in the form of a syntax specification), the archetype and template packages, defining
the object-oriented semantics of archetypes and templates, and the openehr_profile package,
Date of Issue: 12 Apr 2007 Page 24 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview openEHR Package Structure
Rev 1.1
which defines a profile of the generic archetype model defined in the archetype package, for use in
openEHR (and other health computing endeavours). The internal structure of the am package is
shown in FIGURE 11.

5.4 Service Model (SM)
The openEHR service model includes definitions of basic services in the health information environ-
ment, centred around the EHR. It is illustrated in FIGURE 12. The set of services actually included
will undoubtedly evolve over time, so this diagram should not be seen as definitive.

Virtual EHR API
The virtual EHR API defines the fine-grained interface to EHR data, at the level of Compositions and
below. It allows an application to create new EHR information, and to request parts of an existing
EHR and modify them. This API enables fine-grained archetype-mediated data manipulation.
Changes to the EHR are committed via the EHR service.

EHR Service Model
The EHR service model defines the coarse-grained interface to electronic health record service. The
level of granularity is openEHR Contributions and Compositions, i.e. a version-control / change-set
interface.

Part of the model defines the semantics of server-side querying, i.e. queries which cause large
amounts of data to be processed, generally returning small aggregated answers, such as averages, or
sets of ids of patients matching a particular criterion.

Archetype Service Model
The archetype service model defines the interface to online repositories of archetypes, and can be
used both by GUI applications designed for human browsing as well as access by other software serv-
ices such as the EHR.

Terminology Interface Model
The terminology interface service provides the means for all other services to access any terminology
available in the health information environment, including basic classification vocabularies such as
ICDx and ICPC, as well as more advanced ontology-based terminologies. Following the concept of
division of responsibilities in a system-of-systems context, the terminology interface abstracts the dif-

FIGURE 11 Structure of the org.openehr.am package

archetype
constraint_model

ontology
same structure as

openEHR rm,
sparsely populated

openehr_profile

data_types

....

assertion

primitive
Archetype
Definition

Language (ADL)

template
Editors:{T Beale, S Heard} Page 25 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

openEHR Package Structure Architecture Overview
Rev 1.1
ferent underlying architectures of each terminology, allowing other services in the environment to
access terms in a standard way. The terminology service is thus the gateway to all ontology- and ter-
minology-based knowledge services in the environment, which along with services for accessing
guidelines, drug data and other “reference data” enables inferencing and decision support to be car-
ried out in the environment.

FIGURE 12 Structure of the org.openehr.sm package

virtual_ehr

demographic

archetype

terminology ehr

workflow
Date of Issue: 12 Apr 2007 Page 26 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Design of the openEHR EHR
Rev 1.1
6 Design of the openEHR EHR

6.1 The EHR System
In informational terms, a minimal EHR system based on openEHR consists of an EHR repository, an
archetype repository, terminology (if available), and demographic/identity information, as shown in
FIGURE 13.

The latter may be in the form of an existing PMI (patient master index) or other directory, or it may be
in the form of an openEHR demographic repository. An openEHR demographic repository can act as
a front end to an existing PMI or in its own right. Either way it performs two functions: standardisa-
tion of demographic information structures and versioning. An openEHR EHR contains references to
entities in whichever demographic repository has been configured for use in the environment; the
EHR can be configured to include either no demographic or some identifying data. One of the basic
principles of openEHR is the complete separation of EHR and demographic information, such that an
EHR taken in isolation contains little or no clue as to the identity of the patient it belongs to. The
security benefits are described below. In more complete EHR systems, numerous other services (par-
ticularly security-related) would normally be deployed, as shown in FIGURE 7.

6.2 Top-level Information Structures
As has been shown, the openEHR information models define information at varying levels of granu-
larity. Fine-grained structures defined in the Support and Data types are used in the Data Structures
and Common models; these are used in turn in the EHR, EHR Extract, Demographic and other “top-
level” models. These latter models define the “top-level structures” of openEHR, i.e. content struc-
tures that can sensibly stand alone, and may be considered the equivalent of separate documents in a
document-oriented system. In openEHR information systems, it is generally the top-level structures
that are of direct interest to users. The major top-level structures include the following:

Composition - the committal unit of the EHR (see type COMPOSITION in EHR IM);
EHR Acces - the EHR-wide access control object (see type EHR_ACCESS in EHR IM);
EHR Status - the status summary of the EHR (see type EHR_STATUS in EHR IM);

FIGURE 13 Minimal openEHR EHR System

EHR
111 EHR

222 EHR
333

PERSON

ROLE

AGENT

ORGANISATION

EHR

TERMINOLOGY

DEMOGRAPHIC

ARCHETYPES Existing PMI

REPOSITORYREPOSITORY
(versioned) (versioned)

direct
refs

indirect
refs
Editors:{T Beale, S Heard} Page 27 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Design of the openEHR EHR Architecture Overview
Rev 1.1
Folder hierarchy - act as directory structures in EHR, Demographic services (see type FOLDER
in Common IM);

Party - various subtypes including Actor, Role, etc. representing a demographic entity with
identity and contact details (see type PARTY and subtypes in Demographic IM);

EHR Extract - the transmission unit between EHR systems, containing a serialisation of EHR,
demographic and other content (see type EHR_EXTRACT in EHR Extract IM).

All persistent openEHR EHR, demographic and related content is found within top-level information
structures. Most of these are visible in the following figures.

6.3 The EHR
The openEHR EHR is structured according to a relatively simple model. A central EHR object identi-
fied by an EHR id specifies references to a number of types of structured, versioned information, plus
a list of Contribution objects that act as audits for changes made to the EHR. The high-level structure
of the openEHR EHR is shown in FIGURE 14.

In this figure, the parts of the EHR are as follows:

• EHR: the root object, identified by a globally unique EHR identifier;
• EHR_access (versioned): an object containing access control settings for the record;
• EHR_status (versioned): an object containing various status and control information,

optionally including the identifier of the subject (i.e. patient) currently associated with the
record;

• Directory (versioned): an optional hierarchical structure of Folders that can be used to logi-
cally organise Compositions;

• Compositions (versioned): the containers of all clinical and administrative content of the
record;

FIGURE 14 High-level Structure of the openEHR EHR

EHR Status

Compositions

Directory

Contributions

EHR Access

EHR
Ehr_id

?

Date of Issue: 12 Apr 2007 Page 28 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Design of the openEHR EHR
Rev 1.1
• Contributions: the change-set records for every change made to the health record; each Con-
tribution references a set of one or more Versions of any of the versioned items in the record
that were committed or attested together by a user to an EHR system.

The internal structure of the Composition along with the Directory object correspond closely to the
levels in internationally agreed models of health information such as the CEN EN13606 and HL7
CDA standards.

The logical structure of a typical Composition is shown in more detail in FIGURE 15. In this figure,
the various hierarchical levels from Composition to the data types are shown in a typical arrangement.
The 21 data types provide for all types of data needed for clinical and administrative recording.

6.4 Entries and “clinical statements”
Entry Subtypes
All clinical information created in the openEHR EHR is ultimately expressed in “Entries”. An Entry
is logically a single ‘clinical statement’, and may be a single short narrative phrase, but may also con-
tain a significant amount of data, e.g. an entire microbiology result, a psychiatric examination note, a

FIGURE 15 Elements of an openEHR Composition

EVENT

EVENT

HISTORY
OBSERVATION

ITEM_LIST
ELEMENT

CLUSTER
CLUSTER
ELEMENT

ELEMENT

SECTION
SECTION

OBSERVATION

ACTION

INSTRUCTION

OBSERVATION

ADMIN_ENTRY

COMPOSITION

VERSIONED_COMPOSITION

DV_QUANTITY

DV_DATE_TIME

DV_DATE

DV_URI

DV_TIME

DV_DURATION

DV_TEXT DV_CODED_TEXT

DV_BOOLEAN

DV_ORDINAL

DV_PARAGRAPH

DV_MULTIMEDIA

DV_EHR_URI

DV_PARSABLE

DV_PERIODIC_
TIME_SPECIFICATION

DV_GENERAL_
TIME_SPECIFICATION

DV_INTERVAL

DV_COUNT

F3.04

openEHR Data Types

DV_IDENTIFIER P03449-B-2

DV_STATE

DV_PROPORTION
Editors:{T Beale, S Heard} Page 29 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Design of the openEHR EHR Architecture Overview
Rev 1.1
complex medication order. In terms of actual content, the Entry classes are the most important in the
openEHR EHR Information Model, since they define the semantics of all the ‘hard’ information in
the record. They are intended to be archetyped, and in fact, archetypes for Entries and sub-parts of
Entries make up the vast majority of archetypes defined for the EHR.

The openEHR ENTRY classes are shown in FIGURE 16. There are five concrete subtypes:
ADMIN_ENTRY, OBSERVATION, EVALUATION, INSTRUCTION and ACTION, of which the latter four
are kinds of CARE_ENTRY.

The choice of these types is based on the clinical problem-solving process shown in FIGURE 17.

This figure shows the cycle of information creation due to an iterative, problem solving process typi-
cal not just of clinical medicine but of science in general. The “system” as a whole is made up of two
parts: the “patient system” and the “clinical investigator system”. The latter consists of health carers,
and may include the patient (at points in time when the patient performs observational or therapeutic
activities), and is responsible for understanding the state of the patient system and delivering care to
it. A problem is solved by making observations, forming opinions (hypotheses), and prescribing
actions (instructions) for next steps, which may be further investigation, or may be interventions
designed to resolve the problem, and finally, executing the instructions (actions).

This process model is a synthesis of Lawrence Weed’s “problem-oriented” method of EHR recording,
and later related efforts, including the model of Rector, Nowlan & Kay [7], and the “hypothetico-

ENTRY

CARE_ENTRY ADMIN_ENTRY

OBSERVATION EVALUATION INSTRUCTION ACTION

ACTIVITY
activities*

FIGURE 16 The openEHR Entry model (in EHR IM)

FIGURE 17 Relationship of information types to the investigation process

opinions

observations

instructions

actions

patient

investigator
agents

investigator

- assessment
- goals
- plan

1

2

3

4

published
evidence

base

personal
knowledge

base
Date of Issue: 12 Apr 2007 Page 30 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Design of the openEHR EHR
Rev 1.1
deductive” model of reasoning (see e.g. [3]). However hypothesis-making and testing is not the only
successful process used by clinical professionals - evidence shows that many (particularly those older
and more experienced) rely on pattern recognition and direct retrieval of plans used previously with
similar patients or prototype models. The investigator process model used in openEHR is compatible
with both cognitive approaches, since it does not say how opinions are formed, nor imply any specific
number or size of iterations to bring the process to a conclusion, nor even require all steps to be
present while iterating (e.g. GPs often prescribe without making a firm diagnosis). Consequently, the
openEHR Entry model does not impose a process model, it only provides the possible types of infor-
mation that might occur.

Ontology of Entry Types
In the clinical world practitioners do not think in terms of only five kinds of data corresponding to the
subtypes of Entry described above. There are many subtypes of each of these types, of which some
are shown in the ontology of FIGURE 18.

The key top-level categories are ‘care information’ and ‘administrative information’. The former
encompasses all statements that might be recorded at any point during the care process, and consists
of the major sub-categories on which the Entry model is based, namely ‘observation’, ‘opinion’,
‘instruction’, and ‘action’ (a kind of observation) which themselves correspond to the past, present
and future in time. The administrative information category covers information which is not gener-
ated by the care process proper, but relates to organising it, such as appointments and admissions.
This information is not about care, but about the logistics of care delivery.

Regardless of the diversity, each of the leaf-level categories shown in this figure is ultimately a sub-
category of one of the types from the process model, and hence, of the subtypes of the openEHR
Entry model.

Correct representation of the categories from the ontology is enabled by using archetypes designed to
express the information of interest (say a risk assessment) in terms of a particular Entry subtype (in
this case, Evaluation). In a system where Entries are thus modelled, there will be no danger of incor-
rectly identifying the various kinds of Entries, as long as the Entry subtype, time, and certainty/nega-

FIGURE 18 Ontology of Recorded Information

INSTRUCTIONEVALUATION

OBSERVATION ACTION

ADMIN_ENTRY

CARE_ENTRY

recorded
information

history opinion

assessment

care
information

admin
information

proposal

diagnosis risk recommendation goal scenario prognosis

ENTRY

instruction

xxx = intervention-related

xxx = observation-related

observation action interventioninvestigation
requestrequest
Editors:{T Beale, S Heard} Page 31 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Design of the openEHR EHR Architecture Overview
Rev 1.1
tion are taken into account. Note that even if the ontology of FIGURE 18 is not correct (undoubtedly
it isn’t), archetypes will be constructed to account for each improved idea of what such categories
should really be.

Clinical Statement Status and Negation
A well-known problem in clinical information recording is the assignment of “status” to recorded
items. Kinds of status include variants like “actual value of P” (P stands for some phenomenon),
“family history of P”, “risk of P”, “fear of P”, as well as negation of any of these, i.e. “not/no P”, “no
history of P” etc. A proper analysis of these so called statuses shows that they are not “statuses” at all,
but different categories of information as per the ontology of FIGURE 18. In general, negations are
handled by using “exclusion” archetypes for the appropriate Entry type. For example, “no allergies”
can be modelled using an Evaluation archetype that describes which allergies are excluded for this
patient. Another set of statement types that can be confused in systems that do not properly model
information categories concern interventions, e.g. “hip replacement (5 years ago)”, “hip replacement
(recommended)”, “hip replacement (ordered for next tuesday 10 am)”.

All of these statement types map directly to one of the openEHR Entry types in an unambiguous fash-
ion, ensuring that querying of the EHR does not match incorrect data, such as a statement about fear
or risk, when the query was for an observation of the phenomenon in question.

Further details on the openEHR model clinical information are given in the EHR IM document, Entry
Section.

6.5 Managing Interventions
A key part of the investigation process shown in FIGURE 17, and indeed healthcare in general, is
intervention. Specifying and managing interventions (whether the simplest prescriptions or complex
surgery and therapy) is a hard problem for information systems because it is in “future time” (mean-
ing that intervention activities have to be expressed using branching/looping time specifications, not
the simple linear time of observations), unexpected events can change things (e.g. patient reaction to
drugs), and the status of a given intervention can be hard to track, particularly in distributed systems.
However, from the health professional’s point of view, almost nothing is more basic than wanting to
find out: what medications is this patient on, since when, and what is the progress?

The openEHR approach to these challenges is to use the Entry type INSTRUCTION, its subpart
ACTIVITY to specify interventions in the future, and the Entry subtype ACTION to record what has
actually happened. A number of important features are provided in this model, including:

• a single, flexible way of modelling all interventions, whether they be single drug medication
orders or complex hospital-based therapies;

• a way of knowing the state of any intervention, in terms of the states in a standard state
machine, shown in FIGURE 19; this allows a patient’s EHR to be queried in a standard way
so as to return “all active medications”, “all suspended interventions” etc.;

• a way of mapping particular care process flow steps to the standard state machine states,
enabling health professionals to define and view interventions in terms they understand;

• support for automated workflow, without requiring it.

Coupled with the comprehensive versioning capabilities of openEHR, the Instruction/Action design
allows clinical users of the record to define and manage interventions for the patient in a distributed
environment.
Date of Issue: 12 Apr 2007 Page 32 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

PL
AN

NE
D

AC
TIV

E
CO

MP
LE

TE
D

PO
ST

PO
NE

D

sta
rt

res
tor

e
tim

e_
ou

t

ab
ort

fin
ish

po
stp

on
e

FI
G

U
R

E
 1

9
 o

pe
nE

H
R

 s
ta

nd
ar

d
In

st
ru

ct
io

n
St

at
e

M
ac

hi
ne

ca
nc

el

res
um

e
su

sp
en

d

AB
OR

TE
D

SU
SP

EN
DE

D
tim

e_
ou

t

tim
e_

ou
t

tim
e_

ou
t

EX
PI

RE
D

no
tify

_
co

mp
let

ed

no
tify

_a
bo

rte
d no

tify
_c

an
ce

lle
d

do
ac

tiv
e_

ste
p

po
stp

on
ed

_s
tep

su
sp

en
de

d_
ste

p

CA
NC

EL
LE

D

IN
ITI

AL

pla
n_

ste
p

ini
tia

te

bl
ue

: n
or

ma
l s

tat
e c

ha
ng

ing
 ev

en
t

Tr
an

sit
io

n
leg

en
d

da
rk

 b
lu

e:
no

rm
al

no
n-

sta
te

ch
an

gin
g e

ve
nt

re
d:

 tim
e-

ou
t e

ve
nt

m
ag

en
ta

: p
os

t ti
me

-o
ut

ev
en

t

SC
HE

DU
LE

D

sc
he

du
le

sta
rt

sta
rt

ab
ort

po
stp

on
e

ca
nc

el

gr
ee

n:
 sc

he
du

lin
g-

re
lat

ed
 tr

an
sit

ion
s

sc
he

du
led

_s
tep

res
tor

e

sc
he

du
le

Design of the openEHR EHR Architecture Overview
Rev 1.1
6.6 Time in the EHR
Time is well-known as a challenging modelling problem in health information. In openEHR, times
that are a by-product of the investigation process (e.g. time of sampling or collection; time of meas-
urement, time of a healthcare business event, time of data committal) described above are concretely
modelled, while other times specific to particular content (e.g. date of onset, date of resolution) are
modelled using archetyping of generic data attributes. The following figure shows a typical relation-
ship of times with respect to the observation process, and the corresponding attributes within the
openEHR reference model. Note that under different scenarios, such as GP consultation, radiology
reporting and others, the temporal relationships may be quite different than those shown in the figure.
Time is described in detail in the EHR Information Model document.

6.7 Language
In some situations, there may be more than one language used in the EHR. This may be due to
patients being treated across borders (common among the Scandinavian countries, between Brazil
and northern neighbours), or due to patients being treated while travelling, or due to multiple lan-
guages simply being used in the home environment.

Language is handled as follows in the openEHR EHR. The default language for the whole EHR is
determined from the operating system locale. It may be included in the EHR_status object if desired.

Language is then mandatorily indicated in two places in the EHR data, namely in Compositions and
Entries (i.e. Observations, etc), in a language attribute. This allows both Compositions of different
languages in the EHR, and Entries of different languages in the same Composition. Additionally,
within Entries, text and coded text items may optionally have language recorded if it is different from
the language of the enclosing Entry, or where these types are used within other non-Entry structures
that don’t indicate language.

The use of these features is mostly likely to occur due to translation, although in some cases a truly
multi-lingual environment might exist within the clinical encounter context. In the former case, some
parts of an EHR, e.g. particular Compositions will be translated before or after a clinical encounter to
as to make the information available in the primary language of the EHR. The act of translation (like
any other interaction with the EHR) will cause changes to the record, in the form of new Versions.
New translations can conveniently be recorded as branch versions, attached to the version of which

FIGURE 20 Time in the EHR

Real-world
activities

observation

sample/
collection time

measurement/
reporting time

healthcare event

data entry

OBSERVATION.COMPOSITION. VERSION.openEHR
record

COMPOSITION.

commit

time-lag recorded in

OBSERVATION.data
archetyped attribute in

if relevant

context.start_time data.origin context.end_time

generally
= instant event

audit.time
Date of Issue: 12 Apr 2007 Page 34 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Design of the openEHR EHR
Rev 1.1
they are a translation. This is not mandatory, but provides a convenient way to store translations so
that they don’t appear to replace the original content.
Editors:{T Beale, S Heard} Page 35 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Design of the openEHR EHR Architecture Overview
Rev 1.1
Date of Issue: 12 Apr 2007 Page 36 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Security and Confidentiality
Rev 1.1
7 Security and Confidentiality

7.1 Requirements
Privacy, Confidentiality and Consent
Privacy (the right to limit who sees the personal data) and confidentiality (the obligation of others to
respect the privacy of disclosed data) are primary concerns of many consumers with respect to e-
Health systems. A widely accepted principle is that information provided (either directly or due to
observation or testing of specimens etc.) in confidence by a patient to health professionals during an
episode of care should only be passed on or otherwise become available to other parties if the patient
agrees; put more simply: data sharing must be controlled by patient consent. A more complex sub-
requirement for some patients is allowing differential access to parts of their health record, for exam-
ple, relatively open access rights to most of the health record, but limited access to sexual or mental
health items. The interrelatedness of health information can make this difficult. For example the med-
ication list will often give away sensitive conditions even if the diagnosis is hidden, yet is needed for
any safe treatment, and many health professionals would see the unavailability of current medications
(and allergies) information as highly problematic for giving even basic care.

Requirements of Healthcare Providers
On the other hand, clinical professionals delivering care want fast access to relevant data, and to be
sure that what they see on the screen is a faithful representation of what has been said about the
patient. Emergency access to health records is sometimes needed by carers otherwise unrelated to the
normal care of a patient; such accesses can only be consented to in a general way, since the specific
providers involved will not usually be known.

Researchers in healthcare generally want access to the data of large numbers of patients in order to
evaluate current care and improve it (clinical knowledge discovery), and for educational purposes.
Both of these latter needs are also ultimately patient and societal priorities. Providing effective care
and supporting ongoing medical research therefore have to function in a system that implements the
concept of patient consent.

Specifying Access Control
In theory, it should be easy for the patient or some clinical professional to specify who can see the
patient record. In some cases it is can be done by direct identification, e.g. the patient might nominate
their long-term GP by provider id. Some exclusions could potentially be made this way as well, for
example a previous doctor with whom the patient has a problematic personal relationship.

However it soon becomes difficult to identify provider parties individually when the patient moves
into parts of the healthcare system where there are many staff, and/or where there is no previously
established relationship. The advent of e-prescribing and e-pharmacy will bring even larger numbers
of health and allied health workers into the e-Health matrix, making the problem of individual identi-
fication of who should see the patient’s data infeasible. Further, there is a large and growing category
of “very mobile” people (the military, entertainers, NGO workers, international business and tourism
professionals, athletes....) who cannot predict even in which country they may require care. As a con-
sequence, the need for some access control to be specified in terms of categories or role types appears
inescapable.

The Problem of Roles
One of the difficult challenges to implementing access control to health information is that of defining
“roles”, i.e. the status of users of the record at the time when right of access is being determined. In
Editors:{T Beale, S Heard} Page 37 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Security and Confidentiality Architecture Overview
Rev 1.1
principle, roles ought to be knowable in advance. For example, the labels “nurse”, “GP” and “psychi-
atrist” can be relatively easily assigned to individuals. However, the kinds of labels that are of more
importance are those that differentiate among (for example) personal carers (e.g. primary GP), other
care delivery staff (e.g. nurses, aged carers) and support staff (e.g. pathologists, radiographers). In a
patient care delivery-oriented view of the world, the professional level of a health care professional is
probably less important than his or her relationship to the current care process for the patient.

It will not always be clear which individuals fall into any of these categories at any time, or how such
terms are even defined in different sites and jurisdictions. Realistically, the evaluation of a role cate-
gory such as “care deliverer” into particular identities such as those of nurses on the ward on a partic-
ular day must be done in each care delivery environment, not in the EHR. Access decisions for
information in the EHR therefore will have some dependence on provider site knowledge of which
staff are actively involved in the care process of a given patient.

Role-based access control is further complicated by the common fact of temporary replacements due
to illness or holiday and role changes due to staff shortages. Further, if a physician employing a med-
ical secretary requires her to access and update sensitive parts (relating to his own treatment of the
patient) of the record, access at the highest level is effectively given to someone not medically trained
or related directly to the patient’s care, even if only for 10 minutes. Any role-based system therefore
has to take into account the messy reality of clinical care in the real world rather than being based
solely on theoretical principles.

Usability
Usability of security and privacy mechanisms is a key requirement of a health record architecture.
Some very elegant solutions to fine-grained access control designed by security experts would be
simply unusable in practice because they would take too long for patients and doctors to learn, or are
too time-consuming to actually use on the screen; they could also be too complex to safely implement
in software.

The following sections describe support in openEHR for the main security and privacy requirements
of EHRs.

7.2 Threats to Security and Privacy
Any model of how security and privacy are supported in the health record must be based on some
notion of assumed threats. Without going into great detail, security threats assumed by openEHR
include the following (here “inappropriate” means anything that is not or would not be consented to
by the patient):

• human error in patient identification, leading to incorrect association of health data of one
patient with another. Mis-identification of patients can cause personal data for one patient to
go into the record of another patient (leading to privacy violations and possibly clinical
errors), or into a new record rather than the existing one for the same patient (leading to two
or more clinically incomplete records);

• inappropriate access by health professionals or others in the physical care delivery environ-
ment (including e.g. any worker in a hospital) not involved in the current care of the patient;

• inappropriate access by other persons known to the patient, e.g. a by family member;
• inappropriate access of health data by corporate or other organisations e.g. for purposes of

insurance discrimination;
• malicious theft of or access to health data (e.g. of a celebrity or politician) for profit or other

personal motives;
Date of Issue: 12 Apr 2007 Page 38 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Security and Confidentiality
Rev 1.1
• generic threats to data integrity and availability, such as viruses, worms, denial of service
attacks etc.;

• failures in software (due to bugs, incorrect configuration, interoperability failures etc.) caus-
ing corruption to data, or incorrect display or computation, resulting in clinical errors.

A key principle with respect to the design of mechanisms supporting security, confidentiality and
integrity has to be kept in mind: the likelihood of any given mode of targeted inappropriate access is
proportional to the perceived value of the information and inversely proportional to the cost of access.
To paraphrase Ross Anderson’s BMA paper1 on health data security, for a given access, the perpretra-
tor will try to find the simplest, cheapest and quickest method, which is more likely to be bribery or
burglary than James Bond-inspired technology. openEHR makes use of this principle by providing
some relatively simple mechanisms that are cheap to implement but can make misuse quite difficult,
without compromising availability.

7.3 Solutions Provided by openEHR

7.3.1 Overview
Many of the concrete mechanisms relating to security and privacy are found in system deployments
rather than in models such as openEHR, particularly the implementation of authentication, access
control, and encryption. The openEHR specifications and core component implementations do not
explicitly define many concrete mechanisms since there is great variability in the requirements of dif-
ferent sites - secure LAN deployments many require minimal security inside, whereas web-accessible
health record servers are likely to have quite different requirements. What openEHR does is to sup-
port some of the key requirements in a flexible enough way that deployments with substantially dif-
ferent requirements and configurations can nevertheless implement the basic principles in a standard
way.

FIGURE 21 illustrates the main security measures directly specified by the openEHR architecture.
These include EHR/demographic separation and an EHR-wide access control object. At the level of
versioned objects, commit audits (mandatory), digital signatures and hashes are available. The fol-
lowing subsections describe these features in more detail.

7.3.2 Security Policy
In and of itself, the openEHR EHR imposes only a minimal security policy profile which could be
regarded as necessary, but generally not sufficient for a deployed system (i.e. other aspects would still
need to be implemented in layers whose semantics are not defined in openEHR). The following pol-
icy principles are embodied in openEHR.

General
Indelibility: health record information cannot be deleted; logical deletion is achieved by

marking the data in such a way as to make it appear deleted (implemented in version
control).

Audit trailing: All changes made to the EHR including content objects as well as the EHR status
and access control objects are audit-trailed with user identity, time-stamp, reason, optionally
digital signature and relevant version information; one exception is where the modifier is the

1. see e.g. Ross Anderson - “Security in Clinical Information Systems” available at
http://www.cl.cam.ac.uk/users/rja14/policy11/policy11.html.
Editors:{T Beale, S Heard} Page 39 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

http://www.cl.cam.ac.uk/users/rja14/policy11/policy11.html

Security and Confidentiality Architecture Overview
Rev 1.1
patient, in which case, a symbolic identifier can be used (known as PARTY_SELF in
openEHR; see next point).

Anonymity: the content of the health record is separate from identifying demographic
information. This can be configured such that theft of the EHR provides no direct clue to the
identity of the owning patient (indirect clues are of course harder to control). Stealing an
identified EHR involves theft of data from two servers, or even theft of two physical
computers, depending on deployment configuration.

Access Control
Access list: the overriding principle of access control must be “relevance” both in terms of user

identity (who is delivering care to the patient) and time (during the current episode of care,
and for some reasonable, limited time afterward). An access control list can be defined for
the EHR, indicating both identified individuals and categories, the latter of which might be
role types, or particular staff groups.

Access control of access settings: a gate-keeper controls access to the EHR access control
settings. The gate-keeper is established at the time of EHR creation as being one of the
identities known in the EHR, usually the patient for mentally competent adults, otherwise a
parent, legal guardian, advocate or other responsible person. The gate-keeper determines
who can make changes to the access control list. All changes to the list are audit-trailed as
for normal data (achieved due to normal versioning).

Privacy: patients can mark Compositions in the EHR as having one of a number of levels of
privacy. The definition of the privacy levels is not hard-wired in the openEHR models but
rather is defined by standards or agreements within jurisdictions of use.

Usability: The general mentality of access control setting is one of “sensible defaults” that work
for most of the information in the EHR, most of the time. The defaults for the EHR can be
set by the patient, defining access control behaviour for the majority of access decisions.
Exceptions to the default policy are then added. This approach minimises the need to think
about the security of every item in the EHR individually.

FIGURE 21 Security Features of the openEHR EHR

EHR Status

Compositions

Directory

Contributions

EHR
Ehr_id

EHR Access

audit

audit audit auditaudit

audit

Parties
audit

Demographics

audit

audit

digital signature or hash

commit audit

EHR

legend

audit
Date of Issue: 12 Apr 2007 Page 40 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Security and Confidentiality
Rev 1.1
Other security policy principles that should be implemented in even a minimal EHR deployment but
are not directly specified by openEHR include the following.

Access logging: read accesses by application users to EHR data should be logged in the EHR
system. Currently openEHR does not specify models of such logs, but might do so in the
future. Studies have shown that making users aware of the fact of access logging is an
effective deterrent to inappropriate access (especially where other controls are not
implemented). There are some proponents of the argument that even read-access logs should
be made part of the content of the EHR proper; currently openEHR does not support this
approach.

Record demerging: when data for a patient is found to be in another patient’s EHR, the access
logs for that EHR should be used to determine who has accessed that data, primarily to
determine if subsequent clinical thinking (e.g. diagnoses, medication decisions) have been
made based on wrong information.

Record merging: when more than one EHR is discovered for the same patient, and have to be
merged into a single record, the access control lists have to be re-evaluated and merged by
the patient and potentially relevant carers.

Time-limitation of access: mechanisms should be implemented that limit the time during which
given health professionals can see the patient record. Usually, the outer limits are defined by
the interval of the episode of care in an institution plus some further time to cover follow-up
or outpatient care. Episode start and end are recorded in openEHR as instances of the
ADMIN_ENTRY class, containing admission and discharge details.

Non-repudiation: if digital signing of changes to the record is made mandatory, non-repudiation
of content can be supported by an openEHR system. The digital signing of communications
(EHR Extracts) is also supported in openEHR; coupled with logging of communication of
Extracts, this can be used to guarantee non-repudiation of information passed between
systems (cf. information passed between back-end and front-end applications of the same
system).

Certification: a mechanism should be provided to allow a level of trust to be formally associated
with user signing keys.

A key feature of the policy is that it must scale to distributed environments in which health record
information is maintained at multiple provider sites visited by the patient.

As Anderson points out in the BMA study, policy elements are also needed for guarding against users
gaining access to massive numbers of EHRs, and inferencing attacks. Currently these are outside the
scope of openEHR, and realistically, of most EHR implementations of any kind today.

The following sections describe how openEHR supports the first list of policy objectives.

7.3.3 Integrity
Versioning
The most basic security-related feature of openEHR is its support for data integrity. This is mainly
provided by the versioning model, specified in the change_control package in the Common Infor-
mation Model, and in the Extract Information Model. Change-set based versioning of all information
in the EHR and demographic services constitutes a basic integrity measure for information, since no
content is ever physically modified, only new versions are created. All logical changes and deletions
as well as additions are therefore physically implemented as new Versions rather than changes to
existing information items. Clearly the integrity of the information will depend on the quality of the
Editors:{T Beale, S Heard} Page 41 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Security and Confidentiality Architecture Overview
Rev 1.1
implementation; however, the simplest possible implementations (1 Version = 1 copy) can provide
very good safety due to being write-once systems.

The use of change-sets, known as Contributions in openEHR, provides a further unit of integrity cor-
responding to all items modified, created or deleted in a single unit of work by a user.

The openEHR versioning model defines audit records for all changed items, which can be basic
audits and/or any number of additional digitally signed attestations (e.g. by senior staff). This means
that every write access of any kind to any part of an openEHR record is logged with the user identifi-
cation, time, reason, and potentially other meta-data. Versioning is described in detail in section 8 on
page 45.

Digital Signature
The possibility exists within an openEHR EHR to digitally sign each Version in a Versioned object
(i.e. for each Version of any logical item, such as medications list, encounter note etc.). The signature
is created as a private-key encryption (e.g. RSA-1) of a hash (e.g. MD5) of a canonical representation
(such as in schema-based XML) of the Version being committed. A likely candidate for defining the
signature and digest strings in openEHR is the openPGP message format (IETF RFC24401), due to
being an open specification and self-describing. The use of RFC2440 for the format does not imply
the use of the PGP distributed certificate infrastructure, or indeed any certification infrastructure;
openEHR is agnostic on this point. If no public key or equivalent infrastructure is available, the
encryption step might be omitted, resulting in a digest only of the content. The signature is stored
within the Version object, allowing it to be conveniently carried within EHR Extracts. The process is
shown in FIGURE 22.

The signing of data in a versioning system acts as an integrity check (the digest performs this func-
tion), an authentication measure (the signature performs this function), and also a non-repudiation
measure. To guard against hacking of the versioned persistence layer itself, signatures can be for-
warded to a trusted notarisation service. A fully secure system based on digital signing also requires
certified public keys, which may or may not be available in any given environment.

One of the benefits of digitally signing relatively small pieces of the EHR (single Versions) rather
than the whole EHR or large sections of it is that the integrity of items is more immune to localised
repository corruptions.

1. IETF RFC 2440 - http://www.ietf.org/internet-drafts/draft-ietf-openpgp-rfc2440bis-18.txt

uid = xxxx
data = xxxx
lifecycle_state = xxx
owner_id = xxx

FIGURE 22 Version Signature

Hash
(e.g. SHA-1) Digest

ORIGINAL_VERSION

signature = “xxxx”

canonical
serialiser

xxxx=<>
yyyy= <

zzz=<“wdifwbdfiwdufw”>
ww=<1992-04-12T12:01:00>

aaa= <fwefub>
bb=<“*J&h5g8biB9i8h”>
ccc=<

ddd=<
eee=<124>
fff=<“wdfiubwiefug”>

>
>

radix-64
ASCII

encode

Signature
(ASCII)

canonical

Signature
112647565637224serialised form

Encrypt
(e.g. RSA)

user’s private key

+

or

object form

aa = xxxx
bbb = xxxx

XXX

pp = xxxx
YYY
Date of Issue: 12 Apr 2007 Page 42 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

http://www.ietf.org/internet-drafts/draft-ietf-openpgp-rfc2440bis-18.txt

Architecture Overview Security and Confidentiality
Rev 1.1
7.3.4 Anonymity
As described above in section 6.1, one of the features of the openEHR EHR is a separation of EHR
(clinical and administrative) information and demographic information. This mainly relates to refer-
ences to the patient rather than to provider entities, since the latter are usually publicly known. A spe-
cial kind of object known as PARTY_SELF in openEHR is used to refer to the subject in the EHR. The
only information contained in a PARTY_SELF instance is an optional external reference. The
openEHR EHR can be configured to provide 3 levels of separation by controlling whether and where
this external identifier is actually set in PARTY_SELF instances, as follows:

• Nowhere in the EHR (i.e. every PARTY_SELF instance is a blank placeholder). This is the
most secure approach, and means that the link between the EHR and the patient has to be
done outside the EHR, by associating EHR.ehr_id and the subject identifier. This approach
is more likely for more open environments.

• Once only in the EHR Status object (subject attribute), and nowhere else. This is also rela-
tively secure, if the EHR Status object is protected in some way.

• In every instance of PARTY_SELF; this solution is reasonable in a secure environment, and
convenient for copying parts of the record around locally.

This simple mechanism provides a basic protection against certain kinds of information theft or hack-
ing if used properly. In the most secure situation, a hacker has to steal not just EHR data but also sep-
arate demographic records and an identity cross reference database, both of which can be located on
different machines (making burglary harder). The identity cross-reference database would be easy to
encrypt or protect by other security mechanisms.

7.4 Access Control
Overview
Access control is completely specified in an openEHR EHR in the EHR_ACCESS object for the EHR.
This object acts as a gateway for all information access, and any access decision must be made based
on the policies and rules it contains.

One of the problems with defining the semantics of the EHR Access object is that there is currently
no published formal, proven model of access control for shared health information. Various efforts
underway include the CEN EN13606 part 4 work, the ISO PMAC (Privilege Management and
Access Control) work being done in TC/215 based on the generic security standard ISO/IEC 17799.
Undoubtedly experimental and even some limited production health information security implemen-
tations exist. In reality however, no large-scale shared EHR deployments exist, and so security solu-
tions to date are still developmental.

The openEHR architecture is therefore designed to accommodate alternative models of access con-
trol, each defined by a subtype of the class ACCESS_CONTROL_SETTING (Security IM). This
approach means that a simplistic access control model can be defined and implemented initially, with
more sophisticated models being used later. The “scheme” in use at any given time is always indi-
cated in the EHR Access object.
Editors:{T Beale, S Heard} Page 43 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Security and Confidentiality Architecture Overview
Rev 1.1
Date of Issue: 12 Apr 2007 Page 44 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Versioning
Rev 1.1
8 Versioning

8.1 Overview
Version control is an integral part of the openEHR architecture. An openEHR repository for EHR or
demographic information is managed as a change-controlled collection of “version containers” (mod-
elled by the VERSIONED_OBJECT<T> class in the common.change_control package), each con-
taining the versions of a top-level content structure (such as a Composition or Party) as it changes
over time. A version-controlled top-level content structure is visualised in FIGURE 23.

Versioning of single top-level structures is a necessary, but not sufficient requirement for a repository
that must provide coherence, traceability, indelibility, rollback, and support for forensic examination
of past states of the data. Features supporting “change control” are also required. Under a disciplined
change control scheme, changes are not made arbitrarily to single top-level structures, but to the
repository itself. Changes take the form of change-sets, called “Contributions”, that consist of new or
changed versions of the controlled items in the repository. The key feature of a change-set is that it
acts like a transaction, and takes the repository from one consistent state to another, whereas arbitrary
combinations of changes to single controlled items could easily be inconsistent, and even dangerously
wrong where clinical data are concerned.

These concepts are well-known in configuration management (CM), and are used as the basis for
most software and other change management systems, including numerous free and commercial
products available today. They are a central design feature of openEHR architecture. The following
sections provide more details

8.2 The Configuration Management Paradigm
The “configuration management” (CM) paradigm is well-known in software engineering, and has its
own IEEE standard1. CM is about managed control of changes to a repository of items (formally
called “configuration items” or CIs), and is relevant to any logical repository of distinct information
items which changes in time. In health information systems, at least two types of information require
such management: electronic health records, and demographic information. In most analyses in the
past, the need for change management has been expressed in terms of specific requirements for audit
trailing of changes, availability of previous states of the repository and so on. In openEHR, the aim is

1. IEEE 828-2005 - standard for Software Configuration Management Plans.

FIGURE 23 Version-control structures

Version container
(VERSIONED_OBJECT class)

Versions
(VERSION
class)

a single Version

top-level
content
structure

audit trail
Editors:{T Beale, S Heard} Page 45 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Versioning Architecture Overview
Rev 1.1
to provide a formal, general-purpose model for change control, and show how it applies to health
information.

8.2.1 Organisation of the Repository
The general organisation of a repository of complex information items such as a software repository,
or the EHR consists of the following:

• a number of distinct information items, or configuration items, each of which is uniquely
identified, and may have any amount of internal complexity;

• optionally, a directory system of some kind, in which the configurations items are organised;
• other environmental information which may be relevant to correctly interpreting the primary

versioned items, e.g. versions of tools used to create them.

In a software or document repository, the CIs are files arranged in the directories of the file system; in
an EHR based on openEHR, they are Compositions, the optional Folder structure, Parties in the
demographic service and so on. Contributions are made to the repository by users. This general
abstraction is visualised in FIGURE 24.

8.2.2 Change Management
Change doesn’t occur to Configuration Items in isolation, but to the repository as a whole. Possible
types of change include:

• creation of a new CI;
• removal of a CI;
• modification of a CI;
• creation of, change to or deletion of part of the directory structure;
• moving of a CI to another location in the directory structure;
• attestation of an existing CI.

FIGURE 24 General Structure of a Controlled Repository

CI

CI
CI

CI
CI

CI
CI

CI
CI

Users

Repository

Users

CI

Directory
Structure Configuration

Item

F

F

F

F

contributions contributions
Date of Issue: 12 Apr 2007 Page 46 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Versioning
Rev 1.1
The goal of configuration management is to ensure the following:

• the repository is always in a valid state;
• any previous state of the repository can be reconstructed;
• all changes are audit-trailed.

8.3 Managing Changes in Time
Properly managing changes to the repository requires two mechanisms. The first, version control, is
used to manage versions of each CI, and of the directory structure if there is one. The second is the
concept of the “change-set”, known as a contribution in openEHR. This is the set of changes to indi-
vidual CIs (and other top-level structures in the EHR) made by a user as part of some logical change.
For example, in a document repository, the logical change might be an update to a document that con-
sists of multiple files (CIs). There is one Contribution, consisting of changes to the document file CIs,
to the repository. In the EHR, a Contribution might consist of changes to more than one Composition,
and possibly to the organising Folder structure. Any change to the EHR requires a Contribution. The
kinds of changes that can occur to items affected in a Contribution are:

• addition of new item: a new Version container is created and a first Version added to it;
• deletion of item: a new Version whose data attribute is set to Void is added to an existing

Version container;
• modification of item: a new Version whose data contains the updated form of the item con-

tent is added to an existing Version container (this may be done for a logical update or cor-
rection);

• import of item: a new ‘import’ Version is created, incorporating the received Version;
• attestation of item: a new Attestation is added to the attestations list of an existing Version.

A typical sequence of changes to a repository is illustrated in FIGURE 25.

This shows the effect of four Contributions (indicated by blue ovals on the left hand side) to a reposi-
tory containing a number of CIs (the directory tree is not shown for the sake of simplicity). As each
Contribution is made, the repository is changed in some way. The first brings into existing a new CI,

CIa

Ca1 Cc1 Cd1

Cd2Cb1

tim
e

FIGURE 25 Contributions to the Repository (delta form)

CIb CIc CId

CIw

CIx

CIy

Cw1

CI creation
existing CIs

delta

Contribution
1

Contribution
2

Contribution
3

Contribution
4

Editors:{T Beale, S Heard} Page 47 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Versioning Architecture Overview
Rev 1.1
and modifies three others (changes indicated by the ‘C’ triangles). The second Contribution causes
the creation of a new CI only. The third causes a creation as well as two changes, while the fourth
causes only a change. (Changes to the folder structure are not shown here).

One nuance which should be pointed out is that in FIGURE 25 Contributions are shown as if they are
literally a set of deltas, i.e. exactly the changes which occur to the record. Thus, the first Contribution
is the set {CIw, Ca1, Cc1, Cd1} and so on. Whether this is literally true depends on the construction of
the persistence solution. In some situations, some CIs may be updated by the user viewing the current
list and entering just the changes - the situation shown in FIGURE 25; in others, the system may pro-
vide the current state of these CIs for editing by the user, and submit the updated versions, as shown
in FIGURE 26. Some applications may do both, depending on which CI is being updated. The inter-
nal versioning implementation may or may not generate deltas as a way of efficient storage.

For the purposes of openEHR, a Contribution is considered as being the set of Versions created or
attested at one time, as implied by FIGURE 26.

8.3.1 General Model of a Change-controlled Repository
FIGURE 27 shows an abstract model of a change-controlled repository, which consists of:

• version-controlled configuration items - instances of VERSIONED_OBJECT<T>;
• CONTRIBUTIONs;
• an optional directory system of folders. If folders are used, the folder structure must also be

versioned as a unit.

The actual type of links between the controlled repository and the other entities might vary - in some
cases it might be association, in others aggregation; cardinalities might also vary. FIGURE 27 there-

Ca1 Cc1 Cd1

Cd1Cb1

tim
e

FIGURE 26 Contributions to the Repository (non-delta form)

CIa CIb CIc CId

CIb’

CId’

CId’’

CIa’

CIx

CIw

CIy

CIw’

Cw1

Contribution
1

Contribution
2

Contribution
3

Contribution
4

Date of Issue: 12 Apr 2007 Page 48 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Versioning
Rev 1.1
fore provides a guide to the definition of actual controlled repositories, such as an EHR, rather than a
formal specification for them.

8.4 The “Virtual Version Tree”
An underlying design concept of the versioning model defined in openEHR is known as a “virtual
version tree”. The idea is simple in the abstract. Information is committed to a repository (such as an
EHR) in lumps, each lump being the “data” of one Version. Each Version has its place within a ver-
sion tree, which in turn is maintained inside a Versioned object (or “version container”). The virtual
version tree concept means that any given Versioned object may have numerous copies in various
systems, and that the creation of versions in each is done in such a way that all versions so created are
in fact compatible with the “virtual” version tree resulting from the superimposition of the version
trees of all copies. This is achieved using simple rules for version identification and is done to facili-
tate data sharing. Two very common scenarios are served by the virtual version tree concept:

• longitudinal data that stands as a proxy for the state or situation of the patient such as “Med-
ications” or “Problem list” (persistent Compositions in openEHR) is created and maintained
in one or more care delivery organisations, and shared across a larger number of organisa-
tions;

• some EHRs in an EHR server in one location are mirrored into one or more other EHR serv-
ers (e.g. at care providers where the relevant patients are also treated); the mirroring process
requires asynchronous synchronisation between servers to work seamlessly, regardless of
the location, time, or author of any data created.

The versioning scheme used in openEHR guarantees that no matter where data are created or copied,
there are no inconsistencies due to sharing, and that logical copies are explicitly represented. It there-
fore provides direct support for shared data in a shared care context.

FIGURE 27 Abstract Model of Change-controlled Repository

CONTRIBUTION
contributions

*

VERSIONED_OBJECT<T>

FOLDER

CONTROLLED_
REPOSITORY

directory

0..1

CIs*

all_CIs

1..*

*
folders

Tdata

VERSIONED_FOLDER
Editors:{T Beale, S Heard} Page 49 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Versioning Architecture Overview
Rev 1.1
Date of Issue: 12 Apr 2007 Page 50 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Identification
Rev 1.1
9 Identification

9.1 Identification of the EHR
In an openEHR system, each EHR has a unique identifier, known as the EHR id, found in the root
EHR object of each EHR. EHR ids should be “strong” globally unique identifiers such as reliably cre-
ated Oids or Guids. No single system should contain two EHRs for the same subject. If this is not
the case, it means that the EHR system has failed to detect the existence of an EHR for a subject, or
failed to match provided demographic attributes to the subject.

In a distributed environment, the correspondence of EHR ids to subjects (i.e. patients) is variable, and
depends on the level of integration of the environment. In non-integrated or sporadically connected
environments, the same patient is likely to have a separate EHR at each institution, each with its own
unique EHR id, but the same subject id. If copies of parts of the patient EHR at one location is
requested by another provider, the received items will be merged into the local EHR for that patient.
Merges of persistent Compositions in such circumstances are likely to require human intervention.
Multiple EHR ids per patient in a distributed context are evidence of a lack of systematic connectivity
or identification service.

In a fully integrated distributed environment, the typical patient will still have local EHRs in multiple
locations, but each carrying the same EHR id. When a patient presents in a new location, a request to
the environment’s identification service could be made to determine if there is already an EHR for
this patient. If there is, a clone of all or part of the existing EHR could be made, or a new empty EHR
could be created, but in all cases, the EHR id would be the same as that used in other locations for the
same patient.

Note that the above logic only holds where the EHR in each location is an openEHR EHR.

9.2 Identification of Items within the EHR

9.2.1 General Scheme
While identification of EHRs is not completely definable by openEHR, the identification of items
with an EHR is fully defined. The scheme described here requires two kinds of “identifier”: identifi-
ers proper and references, or locators. An identifier is a unique (within some context) symbol or
number given to an object, and usually written into the object, whereas a reference is the use of an
identifier by an exterior object, to refer to the object containing the identifier in question. This distinc-
tion is the same as that between primary and foreign keys in a relational database system.

In the openEHR RM, identifiers and references are implemented with two groups of classes defined
in the support.identification package. Identifiers of various kinds are defined by descendant
classes of OBJECT_ID, while references are defined by the classes inheriting from OBJECT_REF. The
distinction is illustrated in FIGURE 28. Here we see two container objects with OBJECT_IDs (since
OBJECT_ID is an abstract type, the actual type will be another XXX_ID class), and various
OBJECT_REFs as references.

9.2.2 Levels of Identification
In order to make data items locatable from the outside, identification is supported at 3 levels in
openEHR, as follows:

• version containers: VERSIONED_OBJECTs (Common IM) are identified uniquely;
Editors:{T Beale, S Heard} Page 51 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Identification Architecture Overview
Rev 1.1
• top-level content structures: content structures such as COMPOSITION, EHR_STATUS,
EHR_ACCESS, PARTY etc. are uniquely identified by the association of the identifier of their
containing VERSIONED_OBJECT and the identifier of their containing VERSION within the
container;

• internal nodes: nodes within top-level structures are identified using paths.

Three kinds of identification are used respectively. For version containers, meaningless unique identi-
fiers (“uids”) are used. In most cases, the type HIER_OBJECT_ID will be used, which contains an
instance of a subtype of the UID class, i.e. either an ISO OID or a IETF UUID (see
http://www.ietf.org/rfc/rfc4122.txt; also known as a GUID). In general UUIDs are favoured since they
require no central assignment and can be generated on the spot. A versioned container can be then ref-
erenced with an OBJECT_REF containing its identifier.

Versions of top-level structures are identified in a way that is guaranteed to work even in distributed
environments where copying, merging and subsequent modification occur. The full identification of a
version of a top-level structure is the globally unique tuple consisting of the uid of the owning
VERSIONED_OBJECT, and the two VERSION attributes version_tree_id and creating_system_id. The
version_tree_id is a 1 or 3-part number string, such as “1” or for a branch, “1.2.1”. The
creating_system_id attribute carries a unique identifier for the system where the content was first cre-
ated; this may be a GUID, Oid or reverse internet identifier. A typical version identification tuple is as
follows:

F7C5C7B7-75DB-4b39-9A1E-C0BA9BFDBDEC -- id of VERSIONED_COMPOSITION
au.gov.health.rdh.ehr1 -- id of creating system
2 -- current version

This 3-part tuple is known as a “Version locator” and is defined by the class OBJECT_VERSION_ID
in the support.identification package. A VERSION can be referred to using a normal
OBJECT_REF that contains a copy of the version’s OBJECT_VERSION_ID. The openEHR version
identification scheme is described in detail in the change_control package section of the Common
IM.

The last component of identification is the path, used to refer to an interior node of a top-level struc-
ture identified by its Version locator. Paths in openEHR follow an Xpath style syntax, with slight
abbreviations to shorten paths in the most common cases. Paths are described in detail below.

To refer to an interior data node from outside a top-level structure, a combination of a Version locator
and a path is required. This is formalised in the LOCATABLE_REF class in the change_control
package section of the Common IM. A Universal Resource Identifier (URI) form can also be used,
defined by the data type DV_EHR_URI (Data types IM). This type provides a single string expression
in the scheme-space “ehr://” which can be used to refer to an interior data node from anywhere (it can

FIGURE 28 XXX_IDs and XXX_REFs

OBJECT_ID = 5

OBJECT_REF = 2

OBJECT_ID = 2

OBJECT_REF = 5

OBJECT_REF = 7
Date of Issue: 12 Apr 2007 Page 52 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

http://www.ietf.org/rfc/rfc4122.txt

Architecture Overview Identification
Rev 1.1
also be used to represent queries; see below). Any LOCATABLE_REF can be converted to a
DV_EHR_URI, although not all DV_EHR_URIs are LOCATABLE_REFs.

FIGURE 29 summarises how various types of OBJECT_ID and OBJECT_REF are used to identify
objects, and to reference them from the outside, respectively.

FIGURE 29 How to reference various levels of object

VERSIONED_OBJECT<X>

VERSION<X>

AUDIT_
TRAIL

VERSION<X>

AUDIT_
TRAIL

VERSION<X>

AUDIT_
TRAIL

uid: HIER_OBJECT_ID

uid: OBJECT_VERSION_ID

OBJECT_REF

OBJECT_REF

LOCATABLE_REF
Editors:{T Beale, S Heard} Page 53 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Identification Architecture Overview
Rev 1.1
Date of Issue: 12 Apr 2007 Page 54 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Archetypes and Templates
Rev 1.1
10 Archetypes and Templates

10.1 Overview
Under the two-level modelling approach, the formal definition of information structuring occurs at
two levels. The lower level is that of the reference model, a stable object model from which software
and data can be built. Concepts in the openEHR reference model are invariant, and include things like
Composition, Section, Observation, and various data types such as Quantity and Coded text. The
upper level consists of domain-level definitions in the form of archetypes and templates. Concepts
defined at this level include things such as “blood pressure measurement”, “SOAP headings”, and
“HbA1c Result”.

All information conforming to the openEHR Reference Model (RM) - i.e. the collection of Informa-
tion Models (IMs) - is “archetypable”, meaning that the creation and modification of the content, and
subsequent querying of data is controllable by archetypes. Archetypes are themselves separate from
the data, and are stored in their own repository. The archetype repository at any particular location
will usually include archetypes from well-known online archetype libraries. Archetypes are deployed
at runtime via templates that specify particular groups of archetypes to use for a particular purpose,
often corresponding to a screen form.

Archetypes are themselves instances of an archetype model, which defines a language in which to
write archetypes; the syntax equivalent of the model is the Archetype Definition Language, ADL.
These formalisms are specified in the openEHR Archetype Object Model (AOM) and ADL docu-
ments respectively. Each archetype is a set of constraints on the reference model, defining a subset of
instances that are considered to conform to the subject of the archetype, e.g. “laboratory result”. An
archetype can thus be thought of as being similar to a LEGO® instruction sheet (e.g. for a tractor) that
defines the configuration of LEGO® bricks making up a tractor. Archetypes are flexible; one arche-
type includes many variations, in the same way that a LEGO® instruction might include a number of
options for the same basic object. Mathematically, an archetype is equivalent to a query in F-logic [5].
In terms of scope, archetypes are general-purpose, re-usable, and composable. For data capture and
validation purposes, they are usually used at runtime by templates.

An openEHR Template is a specification that defines a tree of of one or more archetypes, each con-
straining instances of various reference model types, such as Composition, Section, Entry subtypes
and so on. Thus, while there are likely to be archetypes for such things as “biochemistry results” (an
Observation archetype) and “SOAP headings” (a Section archetype), templates are used to put arche-
types together to form whole Compositions in the EHR, e.g. for “discharge summary”, “antenatal
exam” and so on. Templates usually correspond closely to screen forms, printed reports, and in gen-
eral, complete application-level lumps of information to be captured or sent; they may therefore be
used to define message content. They are generally developed and used locally, while archetypes are
usually widely used.

A template is used at runtime to create default data structures and to validate data input, ensuring that
all data in the EHR conform to the constraints defined in the archetypes referenced by the template. In
particular, it conforms to the path structure of the archetypes, as well as their terminological con-
straints. Which archetypes were used at data creation time is written into the data, in the form of both
archetype identifiers at the relevant root nodes, and archetype node identifiers (the [atnnnn] codes),
which act as normative node names, and which are in turn the basis for paths. When it comes time to
modify the same data, these archetype node identifiers enable applications to retrieve and use the
original archetypes, ensuring modifications respect the original constraints.
Editors:{T Beale, S Heard} Page 55 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetypes and Templates Architecture Overview
Rev 1.1
Archetypes also form the basis of semantic querying. Queries are expressed in a language which is a
synthesis of SQL (SELECT/FROM/WHERE) and W3C XPaths, extracted from the archetypes.

10.2 Archetype Formalisms and Models

10.2.1 Overview
In openEHR, archetypes are formalised by the Archetype Object Model (AOM). This is an object
model of the semantics of archetypes. When an archetype is represented in memory (for example in
an archetype-enabled EHR “kernel”), the archetype will exist as instances of the classes of this
model. The AOM is thus the definitive statement of the semantics of archetypes.

In serialised form, archetypes can be represented in various ways. The normative, abstract serialisa-
tion in openEHR is Archetype Definition Language (ADL). This is an abstract language based on
Frame Logic queries (also known as F-logic [5]) with the addition of terminology. An ADL archetype
is a guaranteed 100% lossless rendering of the semantics of any archetype, and is designed to be a
syntactic analogue of the AOM. Nevertheless, other lossless and lossy serialisations are possible and
some already exist. For practical purposes, XML-based serialisations are used in some situations. A
serialisation purely expressed in dADL, the ADL object serialisation syntax will be available in the
future. Various HTML, RTF and other formats are used for screen rendering and human review.

openEHR Templates are represented as dADL documents whose object model conforms to the Tem-
plate Object Model (TOM).

10.2.2 Design-time Relationships between Archetypes
Archetypes are extensible formal constraint definitions of object structures. In common with object
model classes, they can be specialised, as well as composed (i.e. aggregated). Specialised archetypes
are created when an archetype is already available for the content that needs to be modelled, but it
lacks detail or is too general. For example, the archetype openEHR-EHR-OBSERVATION.labora-
tory.v1 contains generic concepts of ‘specimen’, ‘diagnostic service’, a single result of any type,
and a two-level result battery for grouped results. This archetype could be (and has been) used to rep-
resent nearly any kind of laboratory result data. However, specialisations such as openEHR-EHR-
OBSERVATION.laboratory-glucose.v1 are extremely useful, and can be easily defined based
on the predecessor; in this case, the single result node is redefined to be ‘blood glucose’. The formal
rule for specialisation is that:

• a specialised archetype can only further narrow existing constraints in the parent (but it may
add its own).

This has the effect that the data created with any specialised archetype will always be matched by
queries based on the parent archetype - in other words, a query for ‘laboratory’ Observations will cor-
rectly retrieve ‘glucose’ Observations as well. This accords with the basic ontological principle of
subsumption, which says that instances of a type B are also instances of type A, where type B is
related to type A by the semantic relationship ‘IS-A’. Specialised archetypes are indicated by the use
of an identifier derived from the parent archetype, with a new sub-element of the semantic part of the
identifier, separated by a ‘-’ character.

The second relationship possible between archetypes is composition, allowing large data structures to
be flexibly constrained via the hierarchical re-use of smaller archetypes. Composition is defined in
terms of ‘slots’ within an archetype. A slot is a point in an archetype structure where, instead of spec-
ifying an object type inline, a special allow_archetype constraint is used to specify other archetypes
constraining that same type, that may be used at that point. For example, the archetype openEHR-
Date of Issue: 12 Apr 2007 Page 56 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Archetypes and Templates
Rev 1.1
EHR-SECTION.vital_signs.v1 defines a heading structure for headings to do with vital signs. It
also defines as its items attribute value (i.e. what comes under the heading) a number of possible
Observations; however, rather than defining these inline, it specifies an archetype slot in the form of
constraints on Observation archetypes that are allowed at that point. The simplest kind of constraint is
in terms of regular expressions on archetype identifiers. More complex constraints can be stated in
terms of paths in other archetypes (for example exists(/some/path[at0005])). A slot thus
defines a ‘chaining point’ in terms of possible archetypes allowed or excluded at that point; limiting
this to a single archetype is of course possible. Templates are used to choose which particular arche-
types allowed at a slot will actually be used in a given circumstance.

10.3 Relationship of Archetypes and Templates to Data
All nodes within the top-level information structures in the openEHR RM are “archetypable”, with
certain nodes within those structures being archetype “root points”. Each top-level type is always
guaranteed to be an archetype root point. Although it is theoretically possible to use a single arche-
type for an entire top-level structure, in most cases, particularly for COMPOSITION and PARTY, a hier-
archical structure of multiple archetypes will be used, via the slot mechanism described above. This
allows for componentisation and reusability of archetypes. When hierarchies of archetypes are used
for a top-level structure, there will also be archetype root points in the interior of the structure. For
example, within a COMPOSITION, ENTRY instances (i.e. OBSERVATIONs, EVALUATIONs etc.) are
almost always root points. SECTION instances are root points if they are the top instance in a Section
structure; similarly for FOLDER instances within a directory structure. Other nodes (e.g. interior SEC-
TIONs, ITEM_STRUCTURE instances) might also be archetype root points, depending on how arche-
types are applied at runtime to data. FIGURE 30 illustrates the application of archetypes and
templates to data.

10.4 Archetype-enabling of Reference Model Data
Archetype-enabling of Reference Model classes is achieved via inheritance of the class LOCATABLE
from the package common.archetyped (see Common IM). The LOCATABLE class includes the

FIGURE 30 How Archetypes apply to Data

Composition*

Section*

Section Section

Observation*

History Table* List

List

History

Element

List* Single Single

Element Element Element Element Element Element

Extent of
archetype

Evaluation* Instruction*

Activity

Extent of
template

* = root node

ClusterList*
Editors:{T Beale, S Heard} Page 57 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetypes and Templates Architecture Overview
Rev 1.1
attributes archetype_node_id and archetype_details. In the data, the former carries an identifier from
the archetype. If the node in the data is a root point, it carries the multipart identifier of the generating
archetype, and archetype_details carries an ARCHETYPED object, containing information pertinent to
archetype root points. If it is a non-root node, the archetype_node_id attribute carries the identifier
(known as an “at”, or “archetype term” code) of the archetype interior node that generated the data
node, and the archetype_details attribute is void.

Sibling nodes in data can carry the same archetype_node_id in some cases, since archetypes provide a
pattern for data, rather than an exact template. In other words, depending on the archetype design, a
single archetype node may be replicated in the data.

In this way, each archetyped data composition1 in openEHR data has a generating archetype which
defines the particular configuration of instances to create the desired composition. An archetype for
“biochemistry results” is an OBSERVATION archetype, and constrains the particular arrangement of
instances beneath an OBSERVATION object; a “problem/SOAP headings” archetype constrains SEC-
TION objects forming a SOAP headings structure. In general, an archetyped data composition is any
composition of data starting at a root node and continuing to its leaf nodes, at which point lower-level
compositions, if they exist, begin. Each of the archetyped areas and its subordinate archetyped areas
in FIGURE 30 is an archetyped data composition.

The result of the use of archetypes to create data in the EHR (and other systems) is that the structure
of data in any top-level object conforms to the constraints defined in a composition of archetypes cho-
sen by a template, including all optionality, value, and terminology constraints.

10.5 Archetypes, Templates and Paths
The use of openEHR archetypes and templates enables paths to be used ubiquitously in the openEHR
architecture. Paths are extracted from Archetypes and templates, and are constructed from attribute
names and archetype node identifiers, in an Xpath-compatible syntax, as shown in FIGURE 31.

These paths serve to identify any node in a template or archetype, such as the “diastolic blood pres-
sure” ELEMENT node, deep within a “blood pressure measurement” archetype. Since archetype node
identifiers are embedded into data at runtime, archetype paths can be used to extract data nodes con-
forming to particular parts of archetypes, providing a very powerful basis for querying. Paths can also
be constructed into data, using more complex predicates (still in the Xpath style). Paths in openEHR
are explained in detail under Paths and Locators on page 63.

10.6 Archetypes and Templates at Runtime

10.6.1 Overview
openEHR archetypes and templates were designed as formal artefacts, so as to be computable at runt-
ime. They perform two key functions. The first is to facilitate data validation at data capture or import
time, i.e. to guarantee that data conform to not just the reference model, but also to the archetypes
themselves. Data validation with archetypes is mediated by the use of openEHR Templates. The sec-
ond function is as a design basis for queries. Since data are captured based on archetypes, all
openEHR data are guaranteed to conform to the “semantic paths” that are created by the composition
of archetypes within a template. The paths (such as those shown in FIGURE 31 above) are incorpo-

1. Note: care must be taken not to confuse the general term “composition” with the specific use of this word in
openEHR and CEN EN 13606, defined by the COMPOSITION class; the specific use is always indicated by
using the term “Composition”.
Date of Issue: 12 Apr 2007 Page 58 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Archetypes and Templates
Rev 1.1
rated within a familiar SQL-style syntax, to form queries that can be evaluated to retrieve items on a
semantic basis.

10.6.2 Deploying Archetypes and Templates
Archetypes are mostly designed by clinical or other domain experts, and often require significant
study of a subject area, for example, obstetrics. The development process may occur at a national or
international level, and requires peer review and testing in real systems. This accords with the seman-
tic value of archetypes, namely as reusable models of content. Consequently, from the point of view
of any given site of deployment, archetypes are most likely to have been developed elsewhere, and to
reside in a recognised, quality assured repository.

Such a repository may contain hundreds or even thousands of archetypes. However, most EHR sites
will only require a relatively small number. Clinical experts estimate that 100 archetypes would take
care of 80% of routine general practice and acute care, including laboratory, with many of these being
specialisations of a much smaller number of key archetypes. However, which 100 archetypes are use-
ful for a given site may well vary based on the kind of health care provided, e.g. diabetic clinic, can-
cer, orthopedic hospital ward, aged care home. In general, it can be expected that nearly all archetype
deployment sites will use only a small percentage of published archetypes. Some sites may also
develop a small number of their own archetypes; invariably these will be specialisations of existing
archetypes.

While archetypes constitute the main shared and carefully quality-assured design activity in the sec-
ond layer of openEHR’s two-level structure, templates are a more local affair, and are likely to be the
point of contact of many system designers with archetypes. A template will typically be designed
based on three things:

• what is desired to be in a screen form or report;
• what archetypes are already available;
• local usage of terminology.

FIGURE 31 Paths extracted from an archetype
Editors:{T Beale, S Heard} Page 59 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetypes and Templates Architecture Overview
Rev 1.1
Templates will generally be created locally by tools conforming to the openEHR Template Object
Model.

In the case of GUI applications, the final step in the chain is GUI screen forms. These are created in a
multitude of ways and technologies. In some cases, they will be partially or completely generated
from templates. Regardless of the details, the connection between a screen form and a template will
be established in the tooling environment, so that when the form is requested by a user, the relevant
template will be activated, in turn activating the relevant archetypes.

A further technical detail may come into play in many deployment situations: since the archetypes
and templates required by the environment will be known in advance, they may well be compiled into
a near-runtime form from the sharable openEHR form (i.e. ADL, TOM files) in which they are
received from a repository or local tool. This form will usually differ from site to site, and both
improves performance and ensures that only validated archetypes and templates will actually be
accessed by applications. In such systems, runtime form of templates is most likely to incorporate
copies of the relevant archetypes.

The deployment of archetypes, templates, and screen forms is shown in FIGURE 32.

10.6.3 Validation during Data Capture
Validation is the primary runtime function of archetypes - it is how “archetype-based” data are cre-
ated in the first place, and modified thereafter. Archetype-based validation can be used in a GUI
application or in a data import service. Although the source of the data (keystrokes or received XML
or other messages) is different, the logical process is the same: create archetype-based openEHR data
according to the input stream.

The process at runtime may vary in some details according to implementations and other aspects of
the care setting, but the main thrust will be the same. The archetypes used at a particular site will
always be mediated at runtime by openEHR templates developed for that site or system; these will
usually be linked to screen forms or other formal artefacts that enable the connection between arche-
types and the user or application. It will not be uncommon for a template to be constructed partially at
runtime, due to user choices of archetypes being made on the screen, although of course the user will
not be directly aware of this. Regardless, by the time data are created and validated against the rele-
vant archetypes, the template that does the job will be completely specified.

FIGURE 32 Deployment of Archetypes and Templates

online
Archetype

library

ADL

1200 Archetypes

Template
Editor

ADL

65

Archetype
Editor

TOM

Archetypes
30

Templates

formsruntime
Templates

Presentation

vEHR

EHR
111 EHR

222 EHR
333

Enterprise environment

Application
Date of Issue: 12 Apr 2007 Page 60 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Archetypes and Templates
Rev 1.1
The actual process of data creation and committal is illustrated in FIGURE 33. The essence of the
process is that a “kernel” component performs the task of data creation and validation by maintaining
a “template space” and a “data space”. The former contains the template and archetypes retrieved due
to a screen form being displayed; the latter contains the data structures (instances of the openEHR ref-
erence model) that are constructed due to user activity on the screen. When data are finally commit-
ted, they are guaranteed to conform to the template/archetype definitions, due to the checks that are
made each time the user tries to change the data structure. The committed data contain a “semantic
imprint” of the generating archetypes, in the form of archetype node identifiers on every node of the
data. This simple inclusion in the data model ensures that all archetypes data are queryable by the use
of archetype paths. In XML representations, the archetype node ids are represented as XML attributes
(i.e. inside the tag), thus enabling XPaths to be conveniently navigated through the data based on
these identifiers (more details on this are in the next section).

If data are later modified, they are brought into the kernel along with the relevant template and arche-
types, and the embedded node identifiers allow the kernel to continue to perform appropriate check-
ing of changes to the data.

10.6.4 Querying
The second major computational function of archetypes is to support querying. As described above,
and in the next section, the paths extracted from archetypes are the basis for queries into the data.
Queries are defined in AQL (Archetype Query Language), which is essentially a synthesis of SQL
and XPath style paths extracted from archetypes. The following is an example AQL query meaning
“Get the BMI values which are more than 30 kg/m2 for a specific patient”:

SELECT o/[at0000]/data[at0001]/events[at0002]/data[at0003]/item[0004]/value

FIGURE 33 Templated Archetypes at Runtime

formsruntime
Templates

kernel

EHR
111 EHR

222 EHR
333

Application

template space data space

vEHR

Presentation
Layer Business

Logic

1

2

4

5

7

6

1 user requests form

2 form link to template
causes template retrieval

4 user input causes calls
into application logic

5 application changes
data via kernel calls

3

3 default create of data
based on template

6 each change attempt
causes archetype checking

7 data committed only when
valid with respect to
archetypes in template

Sequence of Events

= object containing archetype
node identifier

template part
archetype part

Legend
Editors:{T Beale, S Heard} Page 61 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetypes and Templates Architecture Overview
Rev 1.1
FROM EHR [uid=@ehrUid]
CONTAINS COMPOSITION c [openEHR-EHR-COMPOSITION.report.v1]
CONTAINS OBSERVATION o[openEHR-EHR-OBSERVATION.body_mass_index.v1]

WHERE o/[at0000]/data[at0001]/events[at0002]/data[at0003]/item[0004]/value > 30

10.7 The openEHR Archteypes
A set of heavily reviewed archetypes is available on the openEHR website at
http://svn.openehr.org/knowledge/archetypes/dev/index.html. This collection is being added to all the time, and
includes archetypes developed for specific countries or other “realms” as well as globally applicable
ones.
Date of Issue: 12 Apr 2007 Page 62 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

http://svn.openehr.org/knowledge/archetypes/dev/index.html

Architecture Overview Paths and Locators
Rev 1.1
11 Paths and Locators

11.1 Overview
The openEHR architecture includes a path mechanism that enables any node within a top level struc-
ture to be specified from the top of the structure using a “semantic” (i.e. archetype-based) X-path
compatible path. The availability of such paths radically changes the available querying possibilities
with health information, and is one of the major distinguishing features of openEHR.

Technically, the combination of a path and a Version identifier such as OBJECT_VERSION_ID forms
a “globally qualified node reference” which can be expressed using LOCATABLE_REF. It can also be
expressed in portable URI form as a DV_EHR_URI, known as a “globally qualified node locator”.
Either representation enables any openEHR data node to be referred to from anywhere. This section
describes the syntax and semantics of paths, and of the URI form of reference. In the following, the
term “archetype path” means a path extracted from an archetype, while “data path” means one that
identifies an item in data. They are no different formally, and this terminology is only used to indicate
where they are used.

11.2 Paths

11.2.1 Basic Syntax
Paths in openEHR are defined in an Xpath1-compatible syntax which is a superset of the path syntax
described in the Archetype Definition Language (ADL). The syntax is designed to be easily mappable
to Xpath expressions, for use with openEHR-based XML.

The data path syntax used in locator expressions follows the general pattern of a path consisting of
segments each consisting of an attribute name2, and separated by the slash (‘/’) character, i.e.:

attribute_name / attribute_name / ... / attribute_name

Paths select the object which is the value of the final attribute name in the path, when going from
some starting point in the tree and following attribute names given in the path. The starting point is
indicated by the initial part of the path, and can be specified in two ways:

relative path: path starts with an attribute name, and the starting point is the current point in the
tree (given by some previous operation or knowledge);

absolute path: path starts with a ‘/’; the starting point is the top of the structure.

In addition, the “//” notation from Xpath can be used to define a path pattern:

path pattern: path starts with or contains a the symbol ‘//’ and is taken to be a pattern which can
match any number of path segments in the data; the pattern is matched if an actual path can
be found anywhere in the structure for which part of the path matches the path section
before the ‘//’ symbol, and a later section matches the section appearing after the ‘//’.

1. See W3C Xpath 1.0 specification, 1999. Available at http://www.w3.org/TR/xpath.
2. In all openEHR documentation, the term “attribute” is used in the object-oriented sense of “property of an
object”, not in the XML sense of named values appearing within a tag. The syntax described here should not be
considered to necessarily have a literal mapping to XML instance, but rather to have a logical mapping to object-
oriented data structures.
Editors:{T Beale, S Heard} Page 63 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

http://www.w3.org/TR/xpath

Paths and Locators Architecture Overview
Rev 1.1
11.2.2 Predicate Expressions
Overview
Paths specified solely with attribute names are limited in two ways. Firstly, they can only locate
objects in structures in which there are no containers such as lists or sets. However, in any realistic
data, including most openEHR data, list, set and hash structures are common. Additional syntax is
needed to match a particular object from among the siblings referred to by a container attribute. This
takes the form of a predicate expression enclosed in brackets (‘[]’) after the relevant attribute in a seg-
ment, i.e.:

attribute_name [predicate expression]

The general form of a path then resembles the following:
attribute_name / attribute_name [predicate expression] / ...

Here, predicate expressions are used optionally on those attributes defined in the reference model to
be of a container type (i.e. having a cardinality of > 1). If a predicate expression is not used on a con-
tainer attribute, the whole container is selected. Note that predicate expressions are often possible
even on single-valued attributes, and technically can be used (e.g. if generic path-processing software
can’t tell the difference) but are not required.

The second limitation of basic paths is that they cannot locate objects based on other conditions, such
as the object having a child node with a particular value. To address this, predicate expressions can be
used to select an object on the basis of other conditions relative to the object, by including boolean
expressions including paths, operators, values and parentheses. The syntax of predicate expressions
used in openEHR is a subset of the Xpath syntax for predicates with a small number of short-cuts.

Archetype path Predicate
The most important predicate uses the archetype_node_id value (inherited from LOCATABLE) to limit
the items returned from a container, such as to certain ELEMENTs within a CLUSTER. The shortcut
form allows the archetype code to be included on its own as the predicate, e.g. [at0003]. This short-
cut corresponds to using an archetype path against the runtime data. A typical archetype-derived path
is the following (applied to an Observation instance):

/data/events[at0003]/data/items[at0025]/value/magnitude

This path refers to the magnitude of a 1-minute Apgar total in an Observation containing a full Apgar
result structure. In this path, the [atNNNN] predicates are a shortcut for [@archetype_node_id =
‘atNNNN’] in standard Xpath. Note that while an archetype path is always unique in an archetype, it
can correspond to more than one item in runtime data, due to the repeated use of the same archetype
node within a container.

Name-based Predicate
In order to create a guaranteed unique data path, predicates can also include the name value (also
inherited from LOCATABLE) as well as the archetype_node_id value. The standard Xpath form of this
expression is exemplified by the following:

/data/events[at0001 and name/value=‘standing’]

Since the combination of an archetype node identifier and a name value is very common in arche-
typed databases, a shortcut is also available for the name/value expression, which is to simply
include the value after a comma as follows:

/data/events[at0001, ‘standing’]
Date of Issue: 12 Apr 2007 Page 64 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Paths and Locators
Rev 1.1
Other Predicates
Other predicates can be used, based on the value of other attributes such as ELEMENT.name or
EVENT.time. Combinations of the archetype_node_id and other such values are commonly used in
querying, such as the following path fragment (applied to an OBSERVATION instance):

/data/events[at0007 AND time >= “24-06-2005 09:30:00”]

This path would choose Events in Observation.data whose archetype_node_id meaning is “summary
event” (at0007 in some archetype) and which occurred at or after the given time. The following
example would choose an Evaluation containing a diagnosis (at0002.1) of “other bacterial intestinal
infections” (ICD10 code A04):

/data/items[at0002.1
AND value/defining_code/terminology_id/value = “ICD10AM”
AND value/defining_code/code_string = “A04”]

11.2.3 Paths within Top-level Structures
Paths within top-level structures strictly adhere to attribute and function names in the relevant parts of
the reference model. Predicate expressions are needed to distinguish multiple siblings in various
points in paths into these structures, but particularly at archetype “chaining” points. A chaining point
is where one archetype takes over from another as illustrated in FIGURE 30. Chaining points in Com-
positions occur between the Composition and a Section structure, potentially between a Section struc-
ture and other sub-Section structures (constrained by a different Section archetype), and between
either Compositions or Section structures, and Entries. Chaining might also occur inside an Entry, if
archetyping is used on lower level structures such as Item_lists etc. Most chaining points correspond
to container types such as List<T> etc., e.g. COMPOSITION.content is defined to be a
List<CONTENT_ITEM>, meaning that in real data, the content of a Composition could be a List of
Section structures. To distinguish between such sibling structures, predicate expressions are used,
based on the archetype_id. At the root point of an archetype in data (e.g. top of a Section structure),
the archetype_id carries the identifier of the archetype used to create that structure, in the same man-
ner as any interior point in an archetyped structure has an archetype_node_id attribute carrying arche-
type node_id values. The chaining point between Sections and Entries works in the same manner, and
since multiple Entries can occur under a single Section, archetype_id predicates are also used to dis-
tinguish them. The same shorthand is used for archetype_id predicate expressions as for
archetype_node_ids, i.e. instead of using [@archetype_id = “xxxxx”], [xxxx] can be used
instead.

The following paths are examples of referring to items within a Composition:
/content[openEHR-EHR-SECTION.vital_signs.v1 and name/value='Vital signs']/

items[openEHR-EHR-OBSERVATION.heart_rate-pulse.v1 and name/value='Pulse']/
data/events[at0003 and name/value='Any event']/data/items[at1005]

/content[openEHR-EHR-SECTION.vital_signs.v1 and name/value='Vital signs']/
items[openEHR-EHR-OBSERVATION.blood_pressure.v1 and
name/value='Blood pressure']/data/events[at0006 and name/value='any event']/
data/items[at0004]

/content[openEHR-EHR-SECTION.vital_signs.v1, 'Vital signs']/
items[openEHR-EHR-OBSERVATION.blood_pressure.v1, 'Blood pressure']/
data/events[at0006, 'any event']/data/items[at0005]

Paths within the other top level types follow the same general approach, i.e. are created by following
the required attributes down the hierarchy.

11.2.4 Data Paths and Uniqueness
Archetype paths are not guaranteed to uniquely identify items in data, due to the fact that one arche-
type node may correspond to multiple instances in the data. However it is often necessary to be able
Editors:{T Beale, S Heard} Page 65 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Paths and Locators Architecture Overview
Rev 1.1
to construct a unique path to an item in real data. This can be done by using attributes other than
archetype_node_id in path predicates. Consider as an example the following OBSERVATION arche-
type:

OBSERVATION[at0000] matches { -- blood pressure measurement
data matches {

HISTORY matches {
events {1..*} matches {

EVENT[at0006] {0..1} matches {-- any event
name matches {DV_TEXT matches {...}}
data matches {

ITEM_LIST[at0003] matches {-- systemic arterial BP
count matches {2..*}
items matches {

ELEMENT[at0004] matches {-- systolic BP
name matches {DV_TEXT matches {...}}
value matches {magnitude matches {...}}

}
ELEMENT[at0005] matches {-- diastolic BP

name matches {DV_TEXT matches {...}}
value matches {magnitude matches {...}}

}
}

}
}

}
}

}

The following path extracted from the archetype refers to the systolic blood pressure magnitude:
/data/events[at0006]/data/items[at0004]/value/magnitude

The codes [atnnnn] at each node of the archetype become the archetype_node_ids found in each
node in the data.

Now consider an OBSERVATION instance (expressed here in dADL format), in which a history of two
blood pressures has been recorded using this archetype:

< -- OBSERVATION - blood pressure measurement
archetype_node_id = <[openEHR-EHR-OBSERVATION.blood_pressure.v1]>
name = <value = <“BP measurement”>>
data = < -- HISTORY

archetype_node_id = <[at0001]>
origin = <2005-12-03T09:22:00>
events = < -- List <EVENT>

[1] = < -- EVENT
archetype_node_id = <[at0006]>
name = <value = <“sitting”>>
time = <2005-12-03T09:22:00>
data = < -- ITEM_LIST

archetype_node_id = <[at0003]>
items = < -- List<ELEMENT>

[1] = <
name = <value = <“systolic”>>
archetype_node_id = <[at0004]>
value = <magnitude = <120.0> ...>

>
[2] = <....

name = <value = <“diastolic”>>
archetype_node_id = <[at0005]>
value = <magnitude = <80.0> ...>
Date of Issue: 12 Apr 2007 Page 66 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Paths and Locators
Rev 1.1
>
>

>
>
[2] = < -- EVENT

archetype_node_id = <[at0006]>
name = <value = <“standing”>>
time = <2005-12-03T09:27:00>
data = < -- ITEM_LIST

archetype_node_id = <[at0003]>
items = < -- List<ELEMENT>

[1] = <
name = <value = <“systolic”>>
archetype_node_id = <[at0004]>
value = <magnitude = <105.0> ...>

>
[2] = <

name = <value = <“diastolic”>>
archetype_node_id = <[at0005]>
value = <magnitude = <70.0> ...>

>
>

>
>

>
>

[Note: in the above example, name values are shown as if they were all DV_TEXTs, whereas in reality
in openEHR they more likely to be DV_CODED_TEXT instances; either is allowed by the archetype.
This has been done to reduce the size of the example, and makes no difference to the paths shown
below].

The archetype path mentioned above matches both systolic pressures in the recording. In many query-
ing situations, this may be exactly what is desired. However, to uniquely match each of the systolic
pressure nodes, paths need to be created that are based not only on the archetype_node_id but also on
another attribute. In the case above, the name attribute provides uniqueness. Guaranteed unique paths
to the systolic and diastolic pressures of each event (sitting and standing measurements) are available
using the following expressions (identical in Xpath)1:

/data/events[1]/data/items[1]/value/magnitude
/data/events[1]/data/items[2]/value/magnitude
/data/events[2]/data/items[1]/value/magnitude
/data/events[2]/data/items[2]/value/magnitude

More expressive unique paths based on archetype paths are also possible, as follows:
/data/events[at0006, ‘sitting’]/data/items[at0004]/value/magnitude
/data/events[at0006, ‘sitting’]/data/items[at0005]/value/magnitude
/data/events[at0006, ‘standing’]/data/items[at0004]/value/magnitude
/data/events[at0006, ‘standing’]/data/items[at0005]/value/magnitude

Each of these paths has an Xpath equivalent of the following form:
/data/events[@archetype_node_id=‘at0006’ and name/value=‘standing’]

/data/items[@archetype_node_id=‘at0004’]
/value/magnitude

As a general rule, one or more other attribute values in the runtime data will uniquely identify any
node in openEHR data. To make construction of unique paths easier, the value of the name attribute

1. the notation attr[1] is a Xpath shorthand for attr[position() = 1]
Editors:{T Beale, S Heard} Page 67 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Paths and Locators Architecture Overview
Rev 1.1
(inherited from the LOCATABLE class), is required to be unique with respect to the name values of sib-
ling nodes. This has two consequences as follows:

• a guaranteed unique path can always be constructed to any data item in openEHR data using
a combination of archetype_node_id and name values (as shown in the example paths
above);

• the name value may be systematically defined to be a copy of one or more other attribute
values. For example, in an EVENT object, name could clearly be a string copy of the time
attribute.

11.3 EHR URIs
There are two broad categories of URIs that can be used with any resource: direct references, and
queries. The first kind are usually generated by the system containing the referred-to item, and passed
to other systems as definitive references, while the second are queries from the requesting system in
the form of a URI.

11.3.1 EHR Reference URIs
To create a reference to a node in an EHR in the form of a URI (uniform resource identifier), three
elements are needed: the path within a top-level structure, a reference to a top-level structure within
an EHR, and a reference to an EHR. These can be combined to form a URI in an “ehr” scheme-space,
obeying the following syntax:

ehr://ehr_locator/top_level_structure_locator/path_inside_top_level_structure

In this way, any object in any openEHR EHR is addressable via a URI. Within ehr-space, URL-style
references to particular servers, hosts etc are not used, due to not being reliable in the long term.
Instead, logical identifiers for EHRs and/or subjects are used, ensuring that URIs remain correct for
the lifetime of the resources to which they refer. The openEHR data type DV_EHR_URI is designed to
carry URIs of this form, enabling URIs to be constructed for use within LINKs and elsewhere in the
openEHR EHR.

An ehr:// URI implies the availability of a name resolution mechanism in ehr-space, similar to the
DNS, which provides such services for http-, ftp- and other well-known URI schemes. Until such
services are established, ad hoc means of dealing with ehr:// URIs are likely to be used, as well as
more traditional http:// style references. The subsections below describe how URIs of both kinds
can be constructed.

EHR Location
In ehr-space, a direct locator for an EHR is an EHR identifier as distinct from a subject or patient
identifier or query. Normally the copy in the ‘local system’ is the one required, and a majority of the
time, may be the only one in existence. In this case, the required EHR can be identified simply by an
unqualified identifier, giving a URI of the form:

ehr://1234567/

However, due to copying / synchronising of the EHR for one subject among multiple EHR systems, a
given EHR identifier may exist at more than one location. It is not guaranteed that each such EHR is
a completely identical copy of the others, since partial copying is allowed. Therefore, in an environ-
ment where EHR copies exist, and there is a need to identify exactly which EHR instance is required,
an system identifier is also required, giving a URI of the form:

ehr://1234567@rmh.nhs.net/
Date of Issue: 12 Apr 2007 Page 68 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Paths and Locators
Rev 1.1
Top-level Structure Locator
There are two logical ways to identify a top-level structure in an openEHR EHR. The first is via the
combination of the identifier of the required top-level object and the version time (i.e. ‘system’ or
‘commit’ time). The former can be done in a number of ways, including via the use of the uid of the
relevant VERSIONED_OBJECT, or via archetype identifiers, or names. This would lead to URIs like
the following:

ehr://1234567/87284370-2D4B-4e3d-A3F3-F303D2F4F34B@latest_trunk_version -- a VO Guid
ehr://1234567/87284370-2D4B-4e3d-A3F3-F303D2F4F34B@2005-08-02T04:30:00 -- using time

The second way to identify a top-level structure is by using an exact Version identifier, i.e. the stand-
ard openEHR Version identifier, which takes the form
version_object_uid::version_tree_id::creating_system_id. This leads to URIs like
the following:

ehr://1234567/87284370-2D4B-4e3d-A3F3-F303D2F4F34B::rmh.nhs.net:2

ehr://1234567/87284370-2D4B-4e3d-A3F3-F303D2F4F34B::F7C5C7B7-75DB-
4b39-9A1E-C0BA9BFDBDEC:2

The first URI identifies a top-level item whose version identifier is 87284370-2D4B-4e3d-A3F3-
F303D2F4F34B::rmh.nhs.net:2, i.e. the second trunk version of the Versioned Object indenti-
fied by the Guid, created at an EHR system identified by net.nhs.rmh. The second is the same, but
another Guid is used to identify the creating system as well. Note that the mention of a system in the
version identifier does not imply that the requested EHR is at that system, only that the top-level
object being sought was created at that system.

If no Version identifier is mentioned, ‘latest_trunk_version’ is always assumed, as per the following:
ehr://1234567/87284370-2D4B-4e3d-A3F3-F303D2F4F34B

Item URIs
With the addition of path expressions as described earlier, URIs can be constructed that refer to the
finest grained items in the openEHR EHR, such as the following:

ehr://1234567/87284370-2D4B-4e3d-A3F3-F303D2F4F34B@latest_trunk_version/
content[openEHR-EHR-SECTION.vital_signs.v1]/
items[openEHR-EHR-OBSERVATION.heart_rate-pulse.v1]/data/
events[at0006, 'any event']/data/items[at0004]

Relative URIs
URIs can also be constructed relative to the current EHR, in which case they do not mention the EHR
id, as in the following example:

ehr:///87284370-2D4B-4e3d-A3F3-F303D2F4F34B@latest_version/
content[openEHR-EHR-SECTION.vital_signs.v1]/
items[openEHR-EHR-OBSERVATION.blood_pressure.v1]/
data/events[at0006, 'any event']/data/items[at0004]
Editors:{T Beale, S Heard} Page 69 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Paths and Locators Architecture Overview
Rev 1.1
Date of Issue: 12 Apr 2007 Page 70 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Terminology in openEHR
Rev 1.1
12 Terminology in openEHR

12.1 Overview
openEHR archetypes provide a powerful way to define the meaning of clinical and related data, and
to connect, or “bind”, data to recognised terminologies such as LOINC, ICDx, ICPC, SNOMED-CT
and the many other terminologies and vocabularies used in healthcare. Terminology is used in
openEHR in the following ways:

• The values of coded attributes in the reference model are defined by an “openEHR” termi-
nology.

• Each archetype contains its own internal terminology, defining the meaning of each ele-
ment.

• Bindings to external terminologies can be included in an archetype, allowing direct map-
pings to terms, or mappings to queries that return specific value sets.

• Querying the EHR using external terminologies is supported by archetype bindings.

The following sections describe these features.

12.2 Terminology to Support the Reference Model
openEHR has its own small terminology and code sets, which are used to provide the value sets of a
number of attributes in the reference model. Code sets are used to express well-known internationally
standardised lists of codes where the codes themselves have meaningful values e.g. the ISO 3166
country codes (“au”, “cn”, “pl” etc). Six such code sets are used by various attributes in the reference
model, each of type CODE_PHRASE (the openEHR type used to represent a term code).

For other coded attributes, such as PARTICIPATION.function in the reference model, the openEHR
terminology takes the more orthodox route in terminology design, and defines value sets in groups
using meaningless codes and rubrics. These attributes are always of type DV_CODED_TEXT; the code
itself is contained within the defining_code attribute.

The openEHR terminology is described in the openEHR Terminology document1, with computable
expressions available at the openEHR terminology page2.

12.3 Archetype Internal Terminology
Archetypes contain their own local terminology (found in the ‘ontology’ section of an archetype).
The use of internal term sets is appropriate when there is no structure to the terms (ie no relationships)
and when synonyms are not important. Thus, the use is limited to small flat lists of terms. The advan-
tages of the terms being internal to the archetype, apart from computational efficiency mentioned
above, are:

• Queries can be based on archetypes alone and do not require interacting with a terminology
server;

• Translation of the terms is made within an explicit thematic context (since every archetype
is about a specific topic) and is therefore far more likely to be accurate;

1. http://svn.openehr.org/specification/TRUNK/publishing/architecture/terminology.pdf
2. http://svn.openehr.org/specification/TRUNK/publishing/architecture/computable/terminology/termi-
nology.html
Editors:{T Beale, S Heard} Page 71 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

http://svn.openehr.org/specification/TRUNK/publishing/architecture/terminology.pdf
http://svn.openehr.org/specification/TRUNK/publishing/architecture/computable/terminology/terminology.html
http://svn.openehr.org/specification/TRUNK/publishing/architecture/computable/terminology/terminology.html

Terminology in openEHR Architecture Overview
Rev 1.1
• Many terms required in archetypes are not available even in very large terminologies;
• People can share data based on archetypes even if they do not share terminologies.

It is clear, however, that many archetypes require a connection to external terminologies to provide
the full benefits of automatic processing; this is described in the next section.

The internal terminology takes the form of a set of {code, text, description} semantic definitions for
each node of the archetype structure. Each such term is identified by an “at” (archetype term) code,
e.g. [at0012]. Each code defined locally in an archetype is used for one of two purposes:

• either to semantically identify the data nodes of the archetype (i.e. to “name” the data), or
• to provide value-sets for leaf attributes.

For example, the local codes in an “Apgar result”1 archetype could contain terms for “1 minute
event” and “2 minute event”. These codes are associated with the reference model nodes within the
‘definition’ part of the archetype. In the Apgar example, the two codes (say [at0003] and [at0026])
will be mapped to nodes of reference model type EVENT (rm.data_structures.history pack-
age), as shown in FIGURE 34. It is this mapping that is the basis for archetype paths: an archetype
path is simply the alternating pattern of reference model attribute names and node codes.

The second use of local codes is as values. In FIGURE 34, the ELEMENT node identified by code
[at0005] has as its value constraint an ORDINAL type whose values can be 0, 1, or 2. Each of these

1. Apgar is a basic measure of health of a newborn, taken 2 or 3 times after delivery, in the form of a 0-10 score.

OBSERVATION[at0000] matches { -- Apgar score
data matches {

HISTORY[at0002] matches { -- history
events cardinality matches {1..*; unordered} matches {

POINT_EVENT[at0003] occurrences matches {0..1} matches {-- 1 minute
offset matches {|PT1M|}
data matches {

ITEM_LIST[at0001] matches {-- structure
items cardinality matches {0..1; ordered} matches {

ELEMENT[at0005] occurrences matches {0..1} matches {-- Heart
value matches {

ORDINAL matches {
value matches {

0|[local::at0006], -- No heart beat
1|[local::at0007], -- Less than 100 bpm
2|[local::at0008] -- Greater than 100 bpm

}
}

}
}
...

}
}

}
}
POINT_EVENT[at0026] occurrences matches {0..1} matches {-- 2 minute

offset matches {|PT2M|}
data matches {

use_node ITEM_LIST /data[at0002]/events[at0003]/data[at0001]
}

}
...

FIGURE 34 Apgar archetype definition (extract)
Date of Issue: 12 Apr 2007 Page 72 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Terminology in openEHR
Rev 1.1
values is coded by the codes [at0006], [at0007], and [at0008]. An extract of the archetype ontology
showing these terms is shown in FIGURE 35.

12.4 Binding to External Terminologies
Binding External Terminology Codes to Archetype Codes
The first kind of binding is the ability within an archetype to map an internal code to a code from an
external terminology. The bindings are grouped on the basis of external terminology, allowing any
given internal code in an archetype to be bound to codes in multiple terminologies. Usually, coverage
provided by external terminologies is incomplete, and the mappings may be approximate, so care

ontology
primary_language = <"en">
languages_available = <"en", "en-us">
terminologies_available = <"LNC205", ...>
term_definitions = <

["en"] = <
items = <

["at0000"] = <
description = <"Clinical score derived from assessment of

breathing, colour, muscle tone, heart rate and reflex
response usually taken at 1, 5 and 10 minutes after birth">

text = <"Apgar score">
>
["at0003"] = <

description = <"Apgar score at one minute">
text = <"1 minute">

>
["at0006"] = <

description = <"No heart beat is present (palpation at base of
umbilical cord)">

text = <"No heart beat">
>
["at0007"] = <

description = <"Heart rate of less than 100 beats per minute">
text = <"Less than 100 beats per minute">

>
["at0008"] = <

description = <"Heart rate of greater than or equal to 100
beats per minute">

text = <"Greater than 100 beats per minute">
>
["at0026"] = <

description = <"Apgar score 2 minutes after birth">
text = <"2 minute">

>
>

>
>
term_binding = <

["LNC205"] = <
items = <

["/data[at0002]/events[at0003]/data/items[at0025]"] =
<[LNC205::9272-6]> -- 1 minute total

["/data[at0002]/events[at0026]/data/items[at0025]"] =
<[LNC205::9271-8]> -- 2 minute total

>
>

FIGURE 35 Apgar archetype ontology section (extract)
Editors:{T Beale, S Heard} Page 73 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Terminology in openEHR Architecture Overview
Rev 1.1
must be taken in creating the mappings in the first place. In the example shown in FIGURE 35, two
paths are shown respectively as being bound to LOINC codes for 1-minute and 2-minute Apgar total.
In this example, the whole path is bound, meaning that the mapping only holds between [at0025] and
[LNC205::9272-6] when [at0025] occurs in the first path; when it occurs in the second path, the map-
ping is to a different LOINC code. This is how so-called “pre-coordinated” codes from external ter-
minologies can be mapped to an openEHR archetype concept.

Bindings can also be made between atomic internal codes and external codes, in which case the
meaning is that the mapping always holds, no matter how many times the internal code is used within
the archetype.

Binding Terminology Value-sets to Archetypes
An important requirement with respect to terminology is that of specifying value sets for attributes
defined in archetypes. Sometimes value sets are defined locally within the archetype, because the
terms are not available in published terminologies, and in any case may be too hard to define therein,
due to the lack of encapsulation. The terms “no effort”, “moderate effort” and “crying” for example
are recognised values for the “breathing” attribute of an Apgar result1. In the context of Apgar /
breathing, the meanings are clear; clearly however a term with this rubric within a terminology like
SNOMED-CT would need to be pre-coordinated. More importantly, there seems to be little business
value in mapping a SNOMED term for “no effort”, since a query for items containing “no effort” is
unlikely to be useful in a clinical context.

For many other kinds of attributes however, terminologies are an appropriate source of values. Often
such attributes define kinds of real world phenomena, such as kinds of disease and blood groups,
rather than qualities of a phenomenon such as “no effort”, or “blue”. For these attributes a different
kind of connection to external terminology is required. This is achieved in a similar way as for single
code bindings: an internal code is defined, in this case an “ac” code (“ac” = archetype constraint), and
this is bound to queries to one or more external terminologies, whose result would be a (possibly
structured) value set from that terminology. The logical scheme is illustrated in FIGURE 36, where he
attribute value to be coded is “blood group phenotype”.

Currently there is no standard for such queries. This does not affect archetypes directly, since they
simply hold an identifier for a query; the query itself is defined within a “terminology query server”.
The result of this query is a list of blood group phenotypes, which might appear as shown at the bot-
tom of FIGURE 36.

12.5 Querying using External Terminologies
Querying through EHR data is frequently cited to be the major utility of terminology with respect to
health information. With the mappings defined in archetypes, a number of approaches are possible,
however the semantics of the intended query need to be understood first. Consider a query for “aden-
ocarcinoma” on a patient record. SNOMED-CT includes 63 terms beginning with “adenocarcinoma”
(and 171 terms which include the word as a secondary part of the phrase), some as children of a com-
mon parent. Nevertheless, the terms do not all have a single common parent; a choice has to be made
of which terms correspond to the intent of the query. If it is to find any previous diagnosis of “adeno-
carcinoma”, then at least the terms of the form “adenocarcinoma of lung” [snomed-ct::254626006],
“... of liver” have to be included. These are within the “clinical finding” hierarchy, so the use of these
latter terms should ensure that matches are not made with other uses of the same terms in the record,

1. See Apgar archetype - http://svn.openehr.org/knowledge/archetypes/dev/html/en/openEHR-EHR-
OBSERVATION.apgar.v1.html
Date of Issue: 12 Apr 2007 Page 74 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

http://svn.openehr.org/knowledge/archetypes/dev/html/en/openEHR-EHR-OBSERVATION.apgar.v1.html
http://svn.openehr.org/knowledge/archetypes/dev/html/en/openEHR-EHR-OBSERVATION.apgar.v1.html

Architecture Overview Terminology in openEHR
Rev 1.1
e.g. “fear of adenocarcinoma” or “minimal risk of adenocarcinoma”. Such correct matching is com-
pletely dependent upon the correct use of SNOMED-CT terms in the first place by the software appli-
cation and/or user creating the data. It is easy to imagine an application that saves data (including
openEHR data) in the form of two name/value pairs: {“principal diagnosis”, [snomed-ct::35917007]
(“adenocarcinoma”)} and {“site”, “lung”}. Querying using “adenocarcinoma of lung” [snomed-
ct::254626006] will fail, even though this is exactly the meaning of the data. The data are not wrong
as such, but the lesson is clear: coding of data and code use in queries must be governed by common
models, otherwise there is no hope of reliably processing the data.

Under the openEHR aproach, path-based querying can be used to specify (for example):

“EVALUATIONs based on a problem-diagnosis-histological_staging archetype”
with a value at the path /data/items[at0002.1.1]/value/code (histological
diagnosis) equal-to-or-subsumed-by “clinical finding” and equal-to-or-subsumed-by
“adenocarcinoma”.

The assumption here is that the value at this path was originally restricted by the archetype from
which the path is taken, to conforming to the relation {is-a “clinical finding” and is-a “abnormal mor-
phological mass”}. Any finding of adenocarcinoma of the lung is then forced to be from the resulting
subsumption hierarchy; other “adenocarcinoma” terms cannot be wrongly used in this position.

definition
....
ELEMENT[at0004] matches { -- blood phenotype

value matches {
CODE_TEXT matches {[ac0002]}

}
}

ontology
constraint_definitions = <

[“en”] = <
...
[“ac0002”] = <

text = <“a blood phenotype”>
>

>
>
constraint_bindings = <

[“snomed-ct”] = <
...
[“ac0002”] = <http://tqs.openEHR.org/2938495>

>
>

Archetype

1

3

4

1 = the attribute
requiring a value-set

2 = the archetype-local id

2
for the constraint

3 = the archetype-local
definition of the constraint
(= what to put on the
screen if no codes
available)

4 = binding to a query
identifier in an online
terminology query
server

What might appear
on the screen

FIGURE 36 Archetype Constraint Binding
Editors:{T Beale, S Heard} Page 75 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Terminology in openEHR Architecture Overview
Rev 1.1
However, even if the archetype had not restricted the value in this way, the same query which
searched for any “adenocarcinoma” term at the same path could reasonably be used to locate “previ-
ous diagnoses of adenocarcinoma”, since this is the only use of the archetype. In a similar way, arche-
type path-based querying can be used to distinguish the other potential ambiguities described in
section 6.4 on page 29.
Date of Issue: 12 Apr 2007 Page 76 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Deployment
Rev 1.1
13 Deployment

13.1 5-tier System Architecture
Previous sections have described the software architecture of the openEHR specifications. Here we
describe how the package architecture can be applied to building real systems. The general architec-
tural approach in any openEHR system can be considered as 5 layers (i.e. a “5-tier” architecture). The
tiers are as follows.

1. persistence: data storage and retrieval.
2. back-end services: including EHR, demographics, terminology, archetypes, security, record

location, and so on. In this layer, the separation of the different services is transparent, and
each service has a coarse-grained service interface.

3. virtual EHR: this tier is the middleware, and consists of a coherent set of APIs to the vari-
ous back-end services providing access to the relevant services, thereby allowing user
access to the EHR; including EHR, demographics, security, terminology, and archetype
services. It also contains an archetype- and template-enabled kernel, the component respon-
sible for creating and processing archetype-enabled data. In this tier, the separation of back-
end services is hidden, only the functionality is exposed. Other virtual clients are possible,
consisting of APIs for other combinations of back-end services.

4. application logic: this tier consists of whatever logic is specific to an application, which
might be a user application, or another service such as a query engine.

5. presentation layer: this layer consists of the graphical interface of the application, where
applicable.

The same tiers can be used in large deployments, as shown in FIGURE 37, or simply as layers in sin-
gle-machine applications.

FIGURE 37 Basic Enterprise EHR System Architecture

web portal

demo-

web
browser

Legacy DB

secure LAN / ASP / ...

Persistence

highspeed LAN / local

virtual EHR

integration
engine

Enterprise computing environment

graphic
service

identity
service

EHR
service

security
services

knowledge
services

virtual EHR

clinical
application

virtual EHR

application
logic

presentation
layer

message
source

2. back-end

1. persistence

3. virtual client

4. application
logic

5. presentation

services

virtual EHR

query
engine
Editors:{T Beale, S Heard} Page 77 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Deployment Architecture Overview
Rev 1.1
FIGURE 38 illustrates an approximate mapping of major parts of the openEHR software architecture
to the 5-tier scheme. Clearly where parts of the architecture are used will depend on various imple-
mentation choices; the mapping shown is therefore not definitive. Nevertheless, the principal use of
parts of the architecture is likely to be similar in most systems, as follows:

• RM and AM: mainly used to construct an archetype- and template-processing kernel;
• RM common.change_control package: provides the logic for versioning in versioned

services such as the EHR and demographics;
• SM: various service model packages define the exposed interfaces of major services;
• SM virtual_ehr package defines the API of the virtual EHR component;
• archetypes: archetypes might be assumed directly in some applications, e.g. a specialist

peri-natal package might be partly based on a family of archetypes for this specialisation;
• templates: both archetypes and templates will be used in the presentation layer of applica-

tions. Some will base the GUI code on them, while others will have either tool-generate
code, or dynamically generate forms based on particular templates and archetypes.

In the future, an abstract persistence API and optimised persistence models (transformations of the
existing RM models) are likely to be published by openEHR in order to help with the implementation
of databases.

FIGURE 38 Mapping of software architecture to deployment architecture

virtual EHR

application
logic

presentation
layer

services
sm.ehr

persistence

sm.demographic

am

sm.archetype sm.terminology
rm.common.
change_control

rm
sm.virtual_ehr

archetypes
templates

rm.common.
change_control

archetypes
templates

archetypes

(kernel + querying)
rm.ehr_extract
Date of Issue: 12 Apr 2007 Page 78 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Integrating openEHR with other Systems
Rev 1.1
14 Integrating openEHR with other Systems

14.1 Overview
Getting data in and out of the EHR is one of the most basic requirements openEHR aims to satisfy. In
“greenfield” (new build) situations, and for data being created by GUI applications via the openEHR
EHR APIs, there is no issue, since native openEHR structures and semantics are being used. In almost
all other situations, existing data sources and sinks have to be accounted for. In general, external or
‘legacy’ data (here the term is used for convenience, and does not imply anything about the age or
quality of the systems in question) have different syntactic and semantic formats than openEHR data,
and seamless conversion requires addressing both levels.

Existing data sources and sinks include relational databases, HL7v2 messages, HL7 CDA documents
and are likely to include CEN EN13606 data. HL7v2 messages are probably one of the most common
sources of pathology messages in many countries; EDIFACT messages are another. More recently,
HL7v2 messages have been designed for referrals and even discharge summaries. Not all legacy sys-
tems are standardised; most hospital and GP products have their own private models of data and ter-
minology usage.

The primary need with respect to legacy data is to be able to convert data from multiple mutually
incompatible sources into a single, standardised patient-centric EHR for each patient, that can then be
longitudinally viewed and queried. This is what enables GP and specialist notes, diagnoses and plans
to be integrated with laboratory results from multiple sources, patient notes, administrative data and
so on, to provide a coherent record of the patient journey.

In technical terms, a number of types of incompatibility have to be dealt with. There is no guarantee
of correspondence of scope of incoming transactions and target openEHR structures - an incoming
document for example might correspond to a number of clinical archetypes. Structure will not usually
correspond, with legacy data (particularly messages) usually having flatter structures than those
defined in target archetypes. Terminology use is extremely variable in existing systems and messages,
and also has to be dealt with. Data types will also not correspond directly, so that for example, a map-
ping between an incoming string “110/80 mmHg” and the target openEHR form of two
DV_QUANTITY objects each with their own value and units has to be made.

14.2 Integration Archetypes
The foundation of a key approach to the integration problem is the use of two kinds of archetypes. So
far in this document “archetypes” has meant “designed” archetypes, generally clinical, demographic
or administrative. The common factors for all such archetypes are:

• they are based on the main part of the reference model, particularly the Entry subtypes
OBSERVATION, EVALUATION, INSTRUCTION and ACTION;

• they are consciously designed from scratch by groups of domain specialists, and integrated
into the existing library of openEHR archteypes;

• there is one archetype per identifiable health “concept”, such as an observation type, person
type etc.

A second category of archetypes is “integration” archetypes. These are characterised as follows:

• they are based on the same high-level types (COMPOSITION, SECTION etc), but use the
Entry subtype GENERIC_ENTRY (see EHR Information Model);
Editors:{T Beale, S Heard} Page 79 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Integrating openEHR with other Systems Architecture Overview
Rev 1.1
• they are designed to mimic the structure of legacy or existing data or messages; the design
effort therefore is completely different, and is more likely to be done by IT or other technical
staff who are familiar with the structures of the incoming data;

• there is one integration archetype per message type or identifiable source data that makes
sense as a transaction to the EHR.

In the data integration environment, “designed” archetypes always define the target structures, coding
and other semantics of data, while “integration” archetypes provide the means mapping of external
data into the openEHR environment.

14.3 Data Conversion Architecture
The integration archetype-based strategy for importing data into an openEHR system, shown in FIG-
URE 39, consists of two steps.

Firstly, data are converted from their original syntactic format into openEHR COMPOSITION/SEC-
TION/GENERIC_ENTRY structures, shown in the openEHR integration switch. Most of the data will
appear in the GENERIC_ENTRY part, controlled by an integration archetype designed to mimic the
incoming structure (such as an HL7v2 lab message) as closely as possible; FEEDER_AUDIT structures
are used to contain integration meta-data. The result of this step is data that are expressed in the
openEHR type system (i.e. as instances of the openEHR reference model), and are immediately ame-
nable to processing with normal openEHR software.

In the second step, semantic transformation is effected, by the use of mappings between integration
and designed archetypes. Such mappings are created by archetype authors using tools. The mapping
rules are the key to defining structural transformations, use of terminological codes, and other
changes. Serious challenges of course remain in the business of integrating heterogeneous systems;
some of these are dealt with in the Common IM document sections on Feeder systems.

EHR
111

openEHR system

EHR Repository

FIGURE 39 Data Integration using openEHR

archetype-
driven data
converter

COMP

COMP

EHR
222COMP

COMP

COMP

COMP

COMP

COMP

COMP

COMP

native ->
openEHR
converter

HL7v2.3

HIS Db

HL7v2.5

radiology

path

CDA 1.0
clin notes

GP desktop

Compositions using
GENERIC_ENTRY

Compositions using
OBSERVATION etc

designed
archetypes
based on

OBSERVATION
etc

integration
archetypes
based on

GENERIC_ENTRY

Switch

mapping tool

mapping
rules

.csv files

vendor A

PAS

Archetypes
Date of Issue: 12 Apr 2007 Page 80 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Relationship to Standards
Rev 1.1
15 Relationship to Standards
The openEHR specifications make use of available standards where relevant, and as far as possible in
a compatible way. However, for the many standards have never been validated in their published form
(i.e. the form published is not tested in implementations, and may contain errors), openEHR makes
adjustments so as to ensure quality and coherence of the openEHR models. In general, “using” a
standard in openEHR may mean defining a set of classes which map it into the openEHR type system,
or wrap it or express it in some other compatible way, allowing developers to build completely coher-
ent openEHR systems, while retaining compliance or compatibility with standards. The standards rel-
evant to openEHR fall into a number of categories as follows.

Standards by which openEHR can be evaluated
These standards define high-level requirements or compliance criteria which can be used to provide a
means of normative comparison of openEHR with other related specifications or systems:

• ISO/TR 20514. Health informatics — Electronic health record — Definition, scope, and
context. ISO TC 215/WG 1.

• ISO/TS 18308. Technical Specification for Requirements for an EHR Architecture. ISO TC
215/WG1.

Standards which have influenced the design of openEHR specifications
The following standards have influenced the design of the openEHR specifications:

• OMG HDTF Standards - general design
• CEN EN 13606:2006: Electronic Health Record Communication
• CEN HISA 12967-3: Health Informatics Service Architecture - Computational viewpoint

Standards which have influenced the design of openEHR archetypes
The following standards are mainly domain-level models of clinical practice or concepts, and are
being used to design openEHR archetypes and templates.

• CEN HISA 12967-2: Health Informatics Service Architecture - Information viewpoint
• CEN ENV 13940: Continuity of Care.

Standards which are used “inside” openEHR
The following standards are used or referenced at a fine-grained level in openEHR:

• ISO 8601: Syntax for expressing dates and times (used in openEHR Quantity package)
• ISO 11404: General Purpose Data types (mapped to in openEHR assumed_types package

in Support Information Model)
• HL7 UCUM: Unified Coding for Units of Measure (used by openEHR Quantity data type)
• HL7v3 GTS: General Timing Specification syntax (used by openEHR Time specification

data types).
• some HL7v3 domain vocabularies are mapped to the openEHR terminology.
• IETF RFC 2440 - openPGP.

Standards which require a conversion gateway
The following standards are in use and require data conversion for use with openEHR:

• CEN EN 13606:2005: Electronic Health Record Communication - near-direct conversion
possible, as openEHR and CEN EN 13606 are actively maintained to be compatible.
Editors:{T Beale, S Heard} Page 81 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Relationship to Standards Architecture Overview
Rev 1.1
• HL7v3 CDA: Clinical Document Architecture (CDA) release 2.0 - fairly close conversion
may be possible.

• HL7v3 messages. Quality of conversion currently unknown due to flux in HL7v3 messag-
ing specifications and diversity of message schemas.

• HL7v2 messages. Importing of HL7v2 message data is technically not difficult, and is
already used in some openEHR systems. Export from openEHR may also be possible.

Generic Technology Standards
The following standards are used or referenced in openEHR:

• ISO RM/ODP
• OMG UML 2.0
• W3C XML schema 1.0
• W3C Xpath 1.0
Date of Issue: 12 Apr 2007 Page 82 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Implementation Technology Specifications
Rev 1.1
16 Implementation Technology Specifications

16.1 Overview
ITSs are created by the application of transformation rules from the “full-strength” semantics of the
abstract models to equivalents in a particular technology. Transformation rules usually include map-
pings of:

• names of classes and attributes;
• property and function signature mapping;
• mapping of basic types e.g. strings, numerics;
• how to handle multiple inheritance;
• how to handle generic (template) types;
• how to handle covariant and contravariant redefinition semantics;
• the choice of mapping properties with signature xxxx:T (i.e. properties with no arguments)

to stored attributes (xxxx:T) or functions (xxxx():T);
• how to express pre-conditions, post-conditions and class invariants;
• mappings between assumed types such as List<>, Set<> and inbuilt types.

ITSs are being developed for a number of major implementation technologies, as summarised below.
Implementors should always look for an ITS for the technology in question before proceeding. If
none exists, it will need to be defined. A methodology to do this is being developed.

FIGURE 40 illustrates the implementation technology specification space. Each specification docu-
ments the mapping from the standard object-oriented semantics used in the openEHR abstract mod-
els, and also provides an expression of each of the abstract models in the ITS formalism.

abstract
models

Programming
Languages

C#

JavaEiffel

Python delphi

XML-
schema

Serialisation / Data
Formalisms

Distribution
Formalisms

ODL

RDBMS
std

.NET
Postgresql

FIGURE 40 Implementation Technologies

CORBA
IDL

Database
SchemasOracle
Editors:{T Beale, S Heard} Page 83 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Implementation Technology Specifications Architecture Overview
Rev 1.1
Date of Issue: 12 Apr 2007 Page 84 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview References
Rev 1.1
A References
1 Beale T. Archetypes: Constraint-based Domain Models for Future-proof Information Systems.

See http://www.deepthought.com.au/it/archetypes.html.

2 Beale T. Archetypes: Constraint-based Domain Models for Future-proof Information Systems.
OOPSLA 2002 workshop on behavioural semantics. Available at http://www.deep-
thought.com.au.

3 Elstein AS, Shulman LS, Sprafka SA. Medical problem solving: an analysis of clinical reason-
ing. Cambridge, MA: Harvard University Press, 1978

4 ISO:IEC: Information Technology. Open Distributed Processing, Reference Model: Part
2:Foundations.

5 Kifer M, Lausen G, Wu J. Logical Foundations of Object-Oriented and FrameBased Languag-
es. JACM May 1995. See See ftp://ftp.cs.sunysb.edu/pub/TechReports/kifer/flogic.pdf.

6 Maier M. Architecting Principles for Systems-of-Systems. Technical Report, University of Al-
abama in Huntsville. 2000. Available at http://www.infoed.com/Open/PAPERS/systems.htm

7 Rector A L, Nowlan W A, Kay S. Foundations for an Electronic Medical Record. The IMIA
Yearbook of Medical Informatics 1992 (Eds. van Bemmel J, McRay A). Stuttgart Schattauer
1994.

8 Schloeffel P. (Editor). Requirements for an Electronic Health Record Reference Architecture.
International Standards Organisation, Australia; Feb 2002; ISO TC 215/SC N; ISO/WD 18308.

9 CORBAmed document: Person Identification Service. (March 1999). (Authors?)

10 CORBAmed document: Lexicon Query Service. (March 1999). (Authors?)
Editors:{T Beale, S Heard} Page 85 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

http://www.infoed.com/Open/PAPERS/systems.htm
http://www.deepthought.com.au/it/archetypes.html
ftp://ftp.cs.sunysb.edu/pub/TechReports/kifer/flogic.pdf

References Architecture Overview
Rev 1.1
Date of Issue: 12 Apr 2007 Page 86 of 87 Editors:{T Beale, S Heard}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview
Rev 1.1

Editors:{T Beale, S Heard} Page 87 of 87 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

END OF DOCUMENT

	Copyright Notice
	Amendment Record
	Acknowledgements
	1 Introduction
	1.1 Purpose
	1.2 Status
	1.3 Peer review

	2 Overview
	2.1 The openEHR Specification Project

	3 Aims of the openEHR Architecture
	3.1 Overview
	3.2 Clinical Aims
	3.3 Deployment Environments

	4 Design Principles
	4.1 Ontological Separation
	4.2 Separation of Responsibilities
	4.3 Separation of Viewpoints

	5 openEHR Package Structure
	5.1 Overview
	5.2 Reference Model (RM)
	5.2.1 Package Overview

	5.3 Archetype Model (AM)
	5.4 Service Model (SM)

	6 Design of the openEHR EHR
	6.1 The EHR System
	6.2 Top-level Information Structures
	6.3 The EHR
	6.4 Entries and “clinical statements”
	6.5 Managing Interventions
	6.6 Time in the EHR
	6.7 Language

	7 Security and Confidentiality
	7.1 Requirements
	7.2 Threats to Security and Privacy
	7.3 Solutions Provided by openEHR
	7.3.1 Overview
	7.3.2 Security Policy
	7.3.3 Integrity
	7.3.4 Anonymity

	7.4 Access Control

	8 Versioning
	8.1 Overview
	8.2 The Configuration Management Paradigm
	8.2.1 Organisation of the Repository
	8.2.2 Change Management

	8.3 Managing Changes in Time
	8.3.1 General Model of a Change-controlled Repository

	8.4 The “Virtual Version Tree”

	9 Identification
	9.1 Identification of the EHR
	9.2 Identification of Items within the EHR
	9.2.1 General Scheme
	9.2.2 Levels of Identification

	10 Archetypes and Templates
	10.1 Overview
	10.2 Archetype Formalisms and Models
	10.2.1 Overview
	10.2.2 Design-time Relationships between Archetypes

	10.3 Relationship of Archetypes and Templates to Data
	10.4 Archetype-enabling of Reference Model Data
	10.5 Archetypes, Templates and Paths
	10.6 Archetypes and Templates at Runtime
	10.6.1 Overview
	10.6.2 Deploying Archetypes and Templates
	10.6.3 Validation during Data Capture
	10.6.4 Querying

	10.7 The openEHR Archteypes

	11 Paths and Locators
	11.1 Overview
	11.2 Paths
	11.2.1 Basic Syntax
	11.2.2 Predicate Expressions
	11.2.3 Paths within Top-level Structures
	11.2.4 Data Paths and Uniqueness

	11.3 EHR URIs
	11.3.1 EHR Reference URIs

	12 Terminology in openEHR
	12.1 Overview
	12.2 Terminology to Support the Reference Model
	12.3 Archetype Internal Terminology
	12.4 Binding to External Terminologies
	12.5 Querying using External Terminologies

	13 Deployment
	13.1 5-tier System Architecture

	14 Integrating openEHR with other Systems
	14.1 Overview
	14.2 Integration Archetypes
	14.3 Data Conversion Architecture

	15 Relationship to Standards
	16 Implementation Technology Specifications
	16.1 Overview

	A References

