
Release 1 .0 .2
The openEHR Reference Model

Support Information Model

Keywords: EHR, openehr, reference model

Editors: {T Beale, S Heard}a, {D Kalra, D Lloyd}b

a. Ocean Informatics
b. Centre for Health Informatics and Multi-professional Education,
University College London

Revision: 1.6.1 Pages: 66 Date of issue: 20 Oct 2008

Status: STABLE

Data Structures
Data Types

DemographicEHR

Security

EHR Extract

Archetype OM

Support

Common

Integration

Composition openEHR Archetype Profile

Template OM

ADL
© 2003-2008 The openEHR Foundation.

The openEHR Foundation is an independent, non-profit community, facilitating the sharing of
health records by consumers and clinicians via open-source, standards-based implementations

Founding
Chairman

David Ingram, Professor of Health Informatics,
CHIME, University College London

Founding
Members

Dr P Schloeffel, Dr S Heard, Dr D Kalra, D Lloyd, T Beale

email: info@openEHR.org web: http://www.openEHR.org

http://www.openEHR.org

Support Information Model
Rev 1.6.1
Copyright Notice

© Copyright openEHR Foundation 2001 - 2008
All Rights Reserved

1. This document is protected by copyright and/or database right throughout the
world and is owned by the openEHR Foundation.

2. You may read and print the document for private, non-commercial use.
3. You may use this document (in whole or in part) for the purposes of making

presentations and education, so long as such purposes are non-commercial and
are designed to comment on, further the goals of, or inform third parties
about, openEHR.

4. You must not alter, modify, add to or delete anything from the document you
use (except as is permitted in paragraphs 2 and 3 above).

5. You shall, in any use of this document, include an acknowledgement in the form:
“© Copyright openEHR Foundation 2001-2008. All rights reserved. www.openEHR.org”

6. This document is being provided as a service to the academic community and on
a non-commercial basis. Accordingly, to the fullest extent permitted under
applicable law, the openEHR Foundation accepts no liability and offers no
warranties in relation to the materials and documentation and their content.

7. If you wish to commercialise, license, sell, distribute, use or otherwise copy
the materials and documents on this site other than as provided for in
paragraphs 1 to 6 above, you must comply with the terms and conditions of the
openEHR Free Commercial Use Licence, or enter into a separate written agreement
with openEHR Foundation covering such activities. The terms and conditions of
the openEHR Free Commercial Use Licence can be found at
http://www.openehr.org/free_commercial_use.htm
Date of Issue: 20 Oct 2008 Page 2 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2008 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Support Information Model
Rev 1.6.1
Amendment Record

Issue Details Raiser Completed

R E L E A S E 1.0.2

1.6.1 SPEC-256: Correct extension_validity in UID_BASED_ID class.
SPEC-260: Correct the regex published for the ARCHETYPE_ID
type. Improved explanatory text for composite identifiers, includ-
ing statement on case-sensitivity. Warning on .v1draft non-con-
formance included.

R Chen
P Gummer

J Arnett
E Browne

20 Oct 2008

R E L E A S E 1.0.1

1.6.0 CR-000215: Merge DV_PARTIAL_XX date/time classes and move
ISO 8601 semantics to Support IM.
CR-000209: Minor changes to correctly define
AUTHORED_RESOURCE.current_revision. Add minimal definition
for List<T> class.
CR-000200: Correct Release 1.0 typographical errors. Move
INTERVAL class definition to correct section. Add two invariants.
Improved explanation of identifiers.
CR-000202: Correct minor errors in VER-
SION.preceding_version_id. Added is_first function and invariant
to VERSION_TREE_ID class. Added invariants for 1-based num-
bering
CR-000203: Release 1.0 explanatory text improvements.

CR-000204: Add generic id subtype of OBJECT_ID.
CR-000216: Allow mixture of W, D etc in ISO8601 Duration
(deviation from standard).
CR-000219: Use constants instead of literals to refer to terminol-
ogy in RM.
CR-000220: Tighten semantics of HISTORY.period and
EVENT.time.
CR-000144: Add new Ratio type: DV_PROPORTION. Add
Real.floor.
CR-000221: Add normal status to DV_ORDERED. Add “normal
statuses” code set.
CR-000228: Add minor deviations from ISO 8601 to assumed
date/time types.
CR-000229: Minor date/time corrections. Allow 2-digit time-
zones.
CR-000236: Change use of Character to Octet in
DV_MULTIMEDIA.
CR-000239: Add common parent type of OBJECT_VERSION_ID
and HIER_OBJECT_ID.
CR-000243: Add template_id to ARCHETYPED class
CR-000246: Correct openEHR terminology rubrics.

T Beale

Y S Lim

S Heard
G Grieve
D Lloyd
S Heard,

H Frankel
Y S Lim

A Patterson
G Grieve
H Frankel
S Heard

R Chen

A Patterson

S Heard

H Frankel
T Beale

H Frankel

H Frankel

G Grieve

H Frankel

T Beale
B Verhees
M Forss

08 Apr 2007

R E L E A S E 1.0
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 3 of 66 Date of Issue: 20 Oct 2008

© 2003-2008 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Support Information Model
Rev 1.6.1
1.5 CR-000162. Allow party identifiers when no demographic data.
Relax invariant on PARTY_REF.
CR-000184. Separate out terminology from Support IM.
CR-000188: Add generating_type function to ANY for use in
invariants
CR-000161. Support distributed versioning. Move
OBJECT_ID.version to subtypes. Add OBJECT_VERSION_ID,
VERSION_TREE_ID and LOCATABLE_REF types.

S Heard
H Frankel
T Beale
T Beale

T Beale
H Frankel

06 Feb 2006

R E L E A S E 0.96

1.3 CR-000135: Minor corrections to rm.support.terminology package.
CR-000145: Add class for access to external environment.
CR-000137: Add definitions class to support.definition package.

D Lloyd
D Lloyd
D Lloyd

25 Jun 2005

R E L E A S E 0.95

1.2.1 CR-000129. Fix errors in UML & specs of Identification pack-
age. Adjust invariants & postcondition of OBJECT_ID,
HIER_OBJECT_ID, ARCHETYPE_ID and TERMINOLOGY_ID.
Improve text to do with assumed abstract types Any and
Ordered_numeric.

D Lloyd 25 Feb 2005

1.2 CR-000128. Update Support assumed types to ISO 11404:2003.
CR-000107. Add support for exclusion and inclusion of Interval
limits.
CR-000116. Add PARTICIPATION.function vocabulary and invari-
ant.
CR-000122. Fix UML in Terminology_access classes in Support
model.
CR-000118. Make package names lower case.
CR-000111. Move Identification Package to Support.
CR-000064. Re-evaluate COMPOSITION.is_persistent attribute.
Add “composition category” vocabulary. Re-ordered vocabular-
ies alphabetically.

T Beale
A Goodchild

T Beale

D Lloyd

T Beale
DSTC

D Kalra

10 Feb 2005

R E L E A S E 0.9

1.1 CR-000047. Improve handling of codes for structural attributes.
Populated Terminology and code_set codes.

S Heard 11 Mar 2004

1.0 CR-000091. Correct anomalies in use of CODE_PHRASE and
DV_CODED_TEXT. Add simple terminology service interface.
CR-000095. Remove property attribute from Quantity package.
Add simple measurement interface.
Formally validated using ISE Eiffel 5.4.

T Beale

DSTC,
S Heard

09 Mar 2004

0.9.9 CR-000063. ATTESTATION should have a status attribute. D Kalra 13 Feb 2004

0.9.8 CR-000068. Correct errors in INTERVAL class. T Beale 20 Dec 2003

0.9.7 CR-000032. Basic numeric type assumptions need to be stated
CR-000041. Visually differentiate primitive types in openEHR
documents.
CR-000043. Move External package to Common RM and
rename to Identification (incorporates CR-000036 - Add
HIER_OBJECT_ID class, make OBJECT_ID class abstract.)

DSTC,
D Lloyd,
T Beale

09 Oct 2003

Issue Details Raiser Completed
Date of Issue: 20 Oct 2008 Page 4 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2008 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Support Information Model
Rev 1.6.1
Acknowledgements
The work reported in this paper has been funded in by a number of organisations, including The Uni-
versity College, London and Ocean Informatics, Australia.

0.9.6 CR-000013. Rename key classes. Based on CEN ENV13606.
CR-000038. Remove archetype_originator from multi-axial
archetype id.
CR-000039. Change archetype_id section separator from ':' to '-'.

T Beale 18 Sep 2003

0.9.5 CR-000036. Add HIER_OBJECT_ID class, make OBJECT_ID class
abstract.

T Beale 16 Aug 2003

0.9.4 CR-000022. Code TERM_MAPPING.purpose. G Grieve 20 Jun 2003

0.9.3 CR-000007. Added forgotten terminologies for
Subject_relationships and Provider_functions.

T Beale 11 Apr 2003

0.9.2 Detailed review by Ocean, DSTC, Grahame Grieve. Updated
valid characters in OBJECT_ID.namespace.

G Grieve 25 Mar 2003

0.9.1 Added specification for BOOLEAN type. Corrected minor error
in ISO 639 standard strings - now conformant to
TERMINOLOGY_ID. OBJECT_ID.version_id now optional.
Improved document structure.

T Beale 18 Mar 2003

0.9 Initial Writing. Taken from Data types and Common Reference
Models. Formally validated using ISE Eiffel 5.2.

T Beale 25 Feb 2003

Issue Details Raiser Completed
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 5 of 66 Date of Issue: 20 Oct 2008

© 2003-2008 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Support Information Model
Rev 1.6.1
Table of Contents

1 Introduction.. 9
1.1 Purpose .. 9
1.2 Related Documents.. 9
1.3 Status ... 9
1.4 Peer review .. 9
1.5 Conformance ... 9

2 Support Package .. 10
2.1 Overview ... 10
2.2 Class Definitions ... 10
2.2.1 EXTERNAL_ENVIRONMENT_ACCESS Class........................ 10

3 Assumed Types ... 12
3.1 Overview ... 12
3.2 Inbuilt Primitive Types .. 13
3.2.1 Any Type ... 14
3.2.2 Ordered Type ... 14
3.2.3 Numeric Type .. 14
3.2.4 Ordered_numeric Type.. 15
3.2.5 Boolean Type... 15
3.2.6 Real Type... 17
3.3 Assumed Library Types... 17
3.3.1 String Type .. 18
3.3.1.1 UNICODE ...18
3.3.2 Aggregate Type ... 18
3.3.3 List Type.. 19
3.3.4 Set Type ... 19
3.3.5 Array Type... 19
3.3.6 Hash Type.. 20
3.3.7 Interval Type.. 20
3.4 Date/Time Types.. 21
3.4.1 TIME_DEFINITIONS Class... 22
3.4.2 ISO8601_DATE Class... 24
3.4.3 ISO8601_TIME Class ... 25
3.4.4 ISO8601_DATE_TIME Class ... 27
3.4.5 ISO8601_TIMEZONE Class... 29
3.4.6 ISO8601_DURATION Class... 30

4 Identification Package ... 32
4.1 Overview ... 32
4.1.1 Requirements... 32
4.2 Design.. 34
4.2.1 Primitive Identifiers... 34
4.2.2 Composite Identifiers .. 35
4.2.2.1 UID-based Identifiers ..35
4.2.2.2 Archetype Identifiers ..35
4.2.2.3 Template Identifiers ..36
4.2.2.4 Terminology Identifiers ..36
4.2.2.5 Identifying Versions within openEHR Versioned Containers37
Date of Issue: 20 Oct 2008 Page 6 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Support Information Model
Rev 1.6.1
4.2.2.6 Generic and External Identifiers ...37
4.2.2.7 Hierarchical Identifiers ...37
4.2.2.8 Composite Identifiers and Case ..37
4.2.2.9 Composite Identifiers and Language ..38
4.2.3 References..38
4.3 Class Descriptions..38
4.3.1 UID Class...38
4.3.2 ISO_OID Class ..39
4.3.3 UUID Class..39
4.3.4 INTERNET_ID Class ..40
4.3.4.1 Syntax ..40
4.3.5 OBJECT_ID Class ...40
4.3.6 UID_BASED_ID Class ...41
4.3.6.1 Identifier Syntax ..41
4.3.7 HIER_OBJECT_ID Class..41
4.3.8 OBJECT_VERSION_ID Class..42
4.3.8.1 Identifier Syntax ..42
4.3.9 VERSION_TREE_ID Class ..43
4.3.9.1 Syntax ..43
4.3.10 ARCHETYPE_ID Class ..44
4.3.10.1 Archetype ID Syntax ...44
4.3.11 TEMPLATE_ID Class ...45
4.3.12 TERMINOLOGY_ID Class ..46
4.3.12.1 Identifier Syntax ..46
4.3.13 GENERIC_ID Class ..46
4.3.14 OBJECT_REF Class..47
4.3.15 ACCESS_GROUP_REF Class..48
4.3.16 PARTY_REF Class ..48
4.3.17 LOCATABLE_REF Class ...48

5 Terminology Package... 50
5.1 Overview..50
5.2 Service Interface ..50
5.2.1 Code Sets ...50
5.2.2 Terminologies ..50
5.2.3 Terms and Codes in the openEHR Reference Model50
5.3 Identifiers ...52
5.3.1 Code Set Identifiers ...52
5.3.2 Terminology Identifiers ...52
5.4 Class Definitions..57
5.4.1 TERMINOLOGY_SERVICE Class ..57
5.4.2 TERMINOLOGY_ACCESS Class ...58
5.4.3 CODE_SET_ACCESS Class...59
5.4.4 OPENEHR_TERMINOLOGY_GROUP_IDENTIFIERS Class ..59
5.4.5 OPENEHR_CODE_SET_IDENTIFIERS Class60

6 Measurement Package ... 62
6.1 Overview..62
6.2 Service Interface ..62
6.2.1 Class Definitions..62
6.2.1.1 MEASUREMENT_SERVICE Class ..62
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 7 of 66 Date of Issue: 20 Oct 2008

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Support Information Model
Rev 1.6.1
7 Definition Package ... 64
7.1 Overview ... 64
7.2 Class Definitions ... 64
7.2.1 OPENEHR_DEFINITIONS Class .. 64
7.2.2 BASIC_DEFINITIONS Class... 64

A References ... 65
A.1 General .. 65
Date of Issue: 20 Oct 2008 Page 8 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 9 of 66 Date of Issue: 20 Oct 2008

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Support Information Model Introduction
Rev 1.6.1

1 Introduction

1.1 Purpose
This document describes the openEHR Support Reference Model, whose semantics are used by all
openEHR Reference Models. The intended audience includes:

• Standards bodies producing health informatics standards;
• Software development organisations developing EHR systems;
• Academic groups studying the EHR;
• The open source healthcare community.

1.2 Related Documents
Prerequisite documents for reading this document include:

• The openEHR Architecture Overview
• The openEHR Modelling Guide

1.3 Status
This document is under development, and is published as a proposal for input to standards processes
and implementation works.

This document is available at http://svn.openehr.org/specification/TAGS/Release-
1.0.1/publishing/architecture/rm/support_im.pdf.

The latest version of this document can be found at http://svn.openehr.org/specifica-
tion/TRUNK/publishing/architecture/rm/support_im.pdf.

Blue text indicates sections under active development.

1.4 Peer review
Areas where more analysis or explanation is required are indicated with “to be continued” paragraphs
like the following:

To Be Continued: more work required

Reviewers are encouraged to comment on and/or advise on these paragraphs as well as the main con-
tent. Please send requests for information to info@openEHR.org. Feedback should preferably be
provided on the mailing list openehr-technical@openehr.org, or by private email.

1.5 Conformance
Conformance of a data or software artifact to an openEHR Reference Model specification is deter-
mined by a formal test of that artifact against the relevant openEHR Implementation Technology
Specification(s) (ITSs), such as an IDL interface or an XML-schema. Since ITSs are formal, auto-
mated derivations from the Reference Model, ITS conformance indicates RM conformance.

mailto:info@gehr.org
mailto:openehr-technical@openehr.org
http://svn.openehr.org/specification/TAGS/Release-1.0.1/publishing/architecture/rm/support_im.pdf
http://svn.openehr.org/specification/TAGS/Release-1.0.1/publishing/architecture/rm/support_im.pdf
http://svn.openehr.org/specification/TRUNK/publishing/architecture/rm/support_im.pdf
http://svn.openehr.org/specification/TRUNK/publishing/architecture/rm/support_im.pdf

Support Package Support Information Model
Rev 1.6.1
2 Support Package

2.1 Overview
The Support Reference Model comprises types used throughout the openEHR models, including
assumed primitive types defined outside of openEHR. The package structure is illustrated in FIGURE
1. The assumed_types ‘pseudo-package’ stands for types assumed by the openEHR specifcations
to exist in an implementation technology, such as a programming language, schema language or data-
base environment. The four Support packages define the semantics respectively for constants, termi-
nology access, access to externally defined scientific units and conversion information. The class
EXTERNAL_ENVIRONMENT_ACCESS is a mixin class providing access to the service interface classes.

2.2 Class Definitions

2.2.1 EXTERNAL_ENVIRONMENT_ACCESS Class

CLASS EXTERNAL_ENVIRONMENT_ACCESS (abstract)

Purpose A mixin class providing access to services in the external environment.

Functions Signature Meaning

eea_terminology_svc:
TERMINOLOGY_SERVICE

Return an interface to the terminology serv-
ice

eea_measurement_svc:
MEASUREMENT_SERVICE

Return an interface to the measurement serv-
ice

FIGURE 1 rm.support and assumed_types Packages

support

definition

assumed_types

terminology measurement identification

EXTERNAL_ENVIRONMENT_ACCESS

TERMINOLOGY_
SERVICE

MEASUREMENT_
SERVICE
Date of Issue: 20 Oct 2008 Page 10 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Support Information Model Support Package
Rev 1.6.1
Invariants Terminology_service_exists: eea_terminology_svc /= Void
Measurement_service_exists: eea_measurement_svc /= Void

CLASS EXTERNAL_ENVIRONMENT_ACCESS (abstract)
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 11 of 66 Date of Issue: 20 Oct 2008

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Assumed Types Support Information Model
Rev 1.6.1
3 Assumed Types

3.1 Overview
This section describes types assumed by all openEHR models. The set of types chosen here is based
on a common set from various published sources, including:

• ISO 11404 (2003 revision) general purpose data types;
• ISO 8601 (2004) date/time specification;
• Well-known interoperability formalisms, including OMG IDL, W3C XML-schema;
• Well-known object-oriented programming languages, including Java, C#, C++ and Eiffel.

The intention in openEHR is twofold. Firstly, to ensure that openEHR software based on the models
integrates as easily as possible with existing implementation technologies, and secondly, to make the
minimum possible assumptions about types found in implementation formalisms, while making suffi-
cient assumptions to both enable openEHR models to be conveniently specified. The ISO 11404
(2003) standard contains basic semantics of “general purpose data types” (GPDs) for information
technology, and is used here as a normative basis for describing assumptions about types. The opera-
tions and properties described here are compatible with those used in ISO 11404, but not always the
same, as 11404 does not use object-oriented functions. For example, the notional function has(x:T)
(test for presence of a value in a set) defined on the type Set<T> below is not defined on the ISO
11404 Set type; instead, the function IsIn(x: T; s: Set<T>) is defined. However, in object-ori-
ented formalisms, the function IsIn defined on a Set type would usually mean ‘subset of’. In the
interests of clarity for developers, an object-oriented style of functions and properties has been used
here.

ISO8601:2004 is used as the definitional basis for assumed date/time types, since it is commonly used
around the world, and is also the basis for the date/time types in W3C XML-schema. See section 3.4
on page 21 below for details of dates and times.

Two groups of assumed types are identified: primitive types, which are those built in to a formalism’s
type system, and library types, which are assumed to be available in a (class) library defined in the
formalism. Thus, the type Boolean is always assumed to exist in a formalism, while the type
Array<T> is assumed to be available in a library. For practical purposes, these two categories do not
matter that much - whether String is really a library class (the usual case) or an inbuilt type doesn’t
make much difference to the programmer. They are shown separately here mainly as an explanatory
convenience.

The assumptions that openEHR makes about existing types are documented below in terms of inter-
face definitions. Each of these definitions contains only the assumptions required for the given type to
be used in the openEHR Reference Model - it is not by any means a complete interface definition.
The name and semantics of any function used here for an assumed type might not be identical to
those found in some implementation technologies. Any mapping required should be stated in the rel-
evant implementation technology specification (ITS). To give a concrete example, where the assumed
Set<T> type defined below has an operation has(item: T): Boolean which is used throughout the
openEHR specifications, Java has the method contains() on its Set<T> class. In a Java implementa-
tion, the contains() method should then be used throughout the openEHR classes as expressed in
Java, in place of the has() method.
Date of Issue: 20 Oct 2008 Page 12 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Support Information Model Assumed Types
Rev 1.6.1
3.2 Inbuilt Primitive Types
The following types consititute the minimum set of primitive types assumed by openEHR of an
implementation formalism.

FIGURE 2 illustrates the built-in primitive types. Simple inheritance relationships are shown which
facilitate the type descriptions below. A class “Any” is used to stand for the usual top-level class in all
object-oriented type systems, typically called something like “Any” or “Object”. Inheritance from or
subsitutability for an Any class is not assumed in openEHR (hence the dotted lines in the UML). It is
used here to enable basic operations like ‘=’ to be described once for the type Any, rather than in
every subtype. The type Ordered_numeric is on the other hand assumed for purposes of specifica-
tion in the openEHR data_types.quantity package, and is intended to be mapped to an equiva-
lent type in a real type system (e.g. in Java, java.lang.Number). Here it is assumed that the
operations defined on Ordered_numeric are available on the types Integer, Real and Double in
implementation type systems, where relevant. Data-oriented implementation type systems such as
XML-schema do not have such operations.

Type name
in openEHR Description ISO 11404

Type
Octet represents a type whose value is an 8-bit value. Octet

Character represents a type whose value is a member of an 8-bit
character-set (ISO: “repertoire”).

Character

Boolean represents logical True/False values; usually physically
represented as an integer, but need not be

Boolean

Integer represents 32-bit integers Integer

Real represents 32-bit real numbers in any interoperable rep-
resentation, including single-width IEEE floating point

Real

Double type which represents 64-bit real numbers, in any inter-
operable representation including double-precision
IEEE floating point.

Real

FIGURE 2 Primitive Types Assumed by openEHR

Ordered_numeric

Any

Integer Double

Character

Real

Boolean Ordered NumericOctet
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 13 of 66 Date of Issue: 20 Oct 2008

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Assumed Types Support Information Model
Rev 1.6.1
3.2.1 Any Type

3.2.2 Ordered Type

3.2.3 Numeric Type

INTERFACE Any (abstract)

Description Abstract supertype. Usually maps to a type like “Any” or “Object” in an object
system. Defined here to provide the value and reference equality semantics.

Abstract Signature Meaning

is_equal (other: Any): Boolean Value equality

Functions Signature Meaning

infix ‘=’ (other: Any): Boolean Reference equality

instance_of (a_type: String) Dynamic type of object as a String.
Used for type name matching.

Invariants

INTERFACE Ordered (abstract)

Purpose Abstract notional parent class of ordered, types i.e. types on which the ‘<‘ opera-
tor is defined.

Abstract Signature Meaning

infix ‘<’ (other: like Current): Boolean Arithmetic comparison. In conjunc-
tion with ‘=’, enables the definition of
the operators ‘>’, ‘>=’, ‘<=’, ‘<>’. In
real type systems, this operator might
be defined on another class for compa-
rability.

Invariants

INTERFACE Numeric (abstract)

Purpose Abstract notional parent class of numeric types, which are types which have vari-
ous arithmetic and comparison operators defined.

Abstract Signature Meaning
Date of Issue: 20 Oct 2008 Page 14 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Support Information Model Assumed Types
Rev 1.6.1
3.2.4 Ordered_numeric Type

3.2.5 Boolean Type

infix "*" (other: like Current): like Cur-
rent
require
other_exists: other /= void
ensure
result_exists: Result /= void

Product by `other'. Actual type of
result depends on arithmetic balancing
rules.

infix "+" (other: like Current): like Cur-
rent
require
other_exists: other /= void
ensure
result_exists: Result /= void
commutative: equal (Result, other +
Current)

Sum with `other' (commutative).
Actual type of result depends on arith-
metic balancing rules.

infix "-" (other: like Current): like Cur-
rent
require
other_exists: other /= void
ensure
result_exists: Result /= void

Result of subtracting `other'. Actual
type of result depends on arithmetic
balancing rules.

Invariants

INTERFACE Ordered_numeric (abstract)

Purpose Abstract notional parent class of ordered, numeric types, which are types with ‘<‘
and arithmetic operators defined.

Inherit ORDERED, NUMERIC

Function Signature Meaning

Invariants

INTERFACE Boolean

Purpose Boolean type used for two-valued mathematical logic.

Function Signature Meaning

INTERFACE Numeric (abstract)
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 15 of 66 Date of Issue: 20 Oct 2008

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Assumed Types Support Information Model
Rev 1.6.1
infix "and" (other: Boolean): Boolean

require
other_exists: other /= void

ensure
de_morgan: Result = not (not Current
or not other)
commutative: Result = (other and Cur-
rent)

Logical conjunction

infix "and then" (other: Boolean):
Boolean
require
other_exists: other /= void
ensure
de_morgan: Result = not (not Current
or else not other)

Boolean semi-strict conjunction with
other

infix "or" (other: Boolean): Boolean
require
other_exists: other /= void
ensure
de_morgan: Result = not (not Current
and not other)
commutative: Result = (other or Cur-
rent)
consistent_with_semi_strict: Result
implies (Current or else other)

Boolean disjunction with other

infix "or else" (other: Boolean):
Boolean
require
other_exists: other /= void
ensure
de_morgan: Result = not (not Current
and then not other)

Boolean semi-strict disjunction with
`other'

infix "xor" (other: Boolean): Boolean
require
other_exists: other /= void
ensure
definition: Result = ((Current or other)
and not (Current and other))

Boolean exclusive or with `other'

INTERFACE Boolean
Date of Issue: 20 Oct 2008 Page 16 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Support Information Model Assumed Types
Rev 1.6.1
3.2.6 Real Type

3.3 Assumed Library Types
The types described in this section are also assumed to be fairly standard in implementation technolo-
gies by openEHR, but usually come from type libraries rather than being built into the type system of
implementation formalisms.

infix "implies" (other: Boolean):
Boolean
require
other_exists: other /= void
ensure
definition: Result = (not Current or else
other)

Boolean implication of `other' (semi-
strict)

Invariants
involutive_negation: is_equal (not (not Current))
non_contradiction: not (Current and (not Current))
completeness: Current or else (not Current)

INTERFACE Real

Purpose Type used to represent decimal numbers. Typically corresponds to a single-preci-
sion floating point value in most languages.

Function Signature Meaning

floor: Integer Return the greatest integer no greater
than the value of this object.

Invariants

Type name in
openEHR Description ISO 11404:

2003 Type
String represents unicode-enabled strings Character-

String/
Sequence

Array<T> physical container of items indexed by number Array

List<T> container of items, implied order, non-unique member-
ship

Sequence

Set<T> container of items, no order, unique membership Set

Hash<T,
U:Comparable>

a table of values of any type T, keyed by values of any
basic comparable type U, typically String or Integer,
but may be more complex types, e.g. a coded term type.

Table

Interval<T> Intervals with open or closed upper and lower bounds. -

INTERFACE Boolean
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 17 of 66 Date of Issue: 20 Oct 2008

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Assumed Types Support Information Model
Rev 1.6.1
FIGURE 3 illustrates the assumed library types. As with the assumed primitive types, inheritance and
abstract classes are used for convenience of the definitions below, but are not formally assumed in
openEHR.

3.3.1 String Type

3.3.1.1 UNICODE
It is assumed in the openEHR specifications that Unicode is supported by the type String. Unicode
is needed for all Asian, Arabic and other script languages, for both data values (particularly plain text
and coded text) and for many predefined string attributes of the classes in the openEHR Reference
Model. It encompasses all existing character sets. In openEHR, UTF-8 encoding is assumed.

3.3.2 Aggregate Type

INTERFACE String

Description Strings of characters, as used to represent textual data in any natural or formal lan-
guage.

Functions Signature Meaning

infix ‘+’ (other: String): String Concatenation operator - causes ‘other’
to be appended to this string

is_empty: Boolean True if string is empty, i.e. equal to “”.

is_integer: Boolean True if string can be parsed as an inte-
ger.

as_integer: Integer
require
is_integer

Return the integer corresponding to the
integer value represented in this string.

Invariants

INTERFACE Aggregate <T> (abstract)

Description Abstract parent of of the aggregate types List<T>, Set<T>, Array<T> and
Hash<T,K>.

FIGURE 3 Library Types Assumed by openEHR

Any

Aggregate

Array SetList Hash

Interval String T->Ordered

TTT T,U->Comparable

T

Date of Issue: 20 Oct 2008 Page 18 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Support Information Model Assumed Types
Rev 1.6.1
3.3.3 List Type

3.3.4 Set Type

3.3.5 Array Type

Functions Signature Meaning

has (v: T): Boolean Test for membership of a value

count: Integer Number of items in container

is_empty: Boolean True if container is empty.

Invariants

INTERFACE List <T> (abstract)

Description Ordered container that may contain duplicates.

Functions Signature Meaning

first: T Return first element.

last: T Return last element.

Invariants First_validity: not is_empty implies first /= Void
Last_validity: not is_empty implies last /= Void

INTERFACE Set <T> (abstract)

Description Unordered container that may not contain duplicates.

Functions Signature Meaning

Invariants

INTERFACE Array <T> (abstract)

Description Container whose storage is assumed to be contiguous.

Functions Signature Meaning

Invariants

INTERFACE Aggregate <T> (abstract)
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 19 of 66 Date of Issue: 20 Oct 2008

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Assumed Types Support Information Model
Rev 1.6.1
3.3.6 Hash Type

3.3.7 Interval Type

INTERFACE Hash <T, U: Comparable>

Description Type representing a keyed table of values. T is the value type, and U the type of
the keys.

Functions Signature Meaning

has_key (a_key: U): Boolean Test for membership of a key

item (a_key: U): T Return item for key ‘a_key’. Equiv-
alent to ISO 11404 fetch operation.

Invariants

INTERFACE Interval <T:Ordered>

Purpose Interval of ordered items.

Attributes Signature Meaning

lower: T lower bound

upper: T upper bound

lower_unbounded: Boolean lower boundary open (i.e. = -infinity)

upper_unbounded: Boolean upper boundary open (i.e. = +infinity)

lower_included: Boolean lower boundary value included in
range if not lower_unbounded

upper_included: Boolean upper boundary value included in
range if not upper_unbounded

Functions Signature Meaning

has(e:T): Boolean True if (lower_unbounded or
((lower_included and v >= lower) or
v > lower)) and
(upper_unbounded or
((upper_included and v <= upper or v
< upper)))
Date of Issue: 20 Oct 2008 Page 20 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Support Information Model Assumed Types
Rev 1.6.1
3.4 Date/Time Types
Although the ISO 11404 (2003) standard defines a date-and-time type generator (section 8.1.6), and a
timeinterval type (section 10.1.6), a more widely used specification of date/times is given by ISO
8601:2004, which is used as the normative basis for both string literal representation and properties
used within openEHR. The types are shown in FIGURE 4.

ISO 8601 semantics not used in openEHR include:

• “expanded” dates, which have year numbers of greater than 4 digits, and may be negative; in
openEHR, only 4-digit year numbers are assumed;

• the YYYY-WW-DD method of expressing dates (since this is imprecise and difficult to
compute with due to variable week starting dates, and not required in health);

• partial date/times with fractional minutes or hours, e.g. hh,hhh or mm,mm; in openEHR,
only fractional seconds are supported;

• the interval syntax. Intervals of date/times are supported in openEHR, but their syntax form
is defined by ADL, and is standardised across all comparable types, not just dates and times.

Deviations from the published standard include the following:

• durations are supposed to take the form of PnnW or PnnYnnMnnDTnnHnnMnnS, but in
openEHR, the W (week) designator can be used in combination with the other designators,
since it is very common to state durations of pregnancy as some combination of weeks and
days.

• partial variants of ISO8601_DATE_TIME can include missing hours, days and months,
whereas ISO 8601:2004 (section 4.3.3 c) only allows missing seconds and minutes. The rea-
sons for this deviation are:

Invariants

Lower_included_valid: lower_unbounded implies not lower_included
Upper_included_valid: upper_unbounded implies not upper_included
Limits_consistent: (not upper_unbounded and not lower_unbounded) implies
lower <= upper
Limits_comparable: (not upper_unbounded and not lower_unbounded) implies
lower.strictly_comparable_to(upper)

INTERFACE Interval <T:Ordered>

FIGURE 4 Date/Time types assumed by openEHR

Any

ISO8601_DATE ISO8601_TIME ISO8601_DATE_TIME ISO8601_DURATION

TIME_DEFINITIONS

ISO8601_TIMEZONE

Ordered
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 21 of 66 Date of Issue: 20 Oct 2008

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Assumed Types Support Information Model
Rev 1.6.1
- the same deviation is used in HL7v2 and HL7v3 TS (timestamp) type, i.e. there are
data in existing clinical systems matching this specification;

- in a typed object model, this deviation is more sensible anyway; the ISO 8601 rule
is most likely a limitation of the purely syntactic means of expression. In real
systems where a timestamp/date-time is specified in a screen form, it makes sense
to allow it to be as partial as possible, rather than artifically restricted to only
missing seconds and minutes.

• the time 24:00:00 (or 240000) is not allowed anywhere, whereas in ISO8601:2004 it
appears to be legal at least for times. This deviation is also appears to be used in HL7v2 and
HL7v3 (where midnight is defined as the time 00:00:00), and is preferable to the docu-
mented standard, since a date/time with time of 24:00:00 is really the next day, i.e. the date
part is then incorrect.

The following class definitions provide an object-oriented expression of the semantics of the subset
of ISO 8601:2004 used by openEHR.

See http://www.cl.cam.ac.uk/~mgk25/iso-time.html and the official ISO standard for ISO
8601 details. Note that in the date, time and date_time formats shown below, ‘Z’ and ‘T’ are literals.
In the duration class shown below, ‘P’, ‘Y’, ‘M’, ‘W’, ‘D’, ‘H’, ‘S’ and ‘T’ are literals.

3.4.1 TIME_DEFINITIONS Class

INTERFACE TIME_DEFINITIONS

Purpose
Definitions for date/time classes. Note that the timezone limits are set by where
the international dateline is. Thus, time in New Zealand is quoted using +12:00,
not -12:00.

Constants Signature Meaning

1..1 Seconds_in_minute: Integer =
60

1..1 Minutes_in_hour: Integer = 60

1..1 Hours_in_day: Integer = 24

1..1 Nominal_days_in_month:
Real = 30.42

Used for conversions of durations contain-
ing months to days and / or seconds.

1..1 Max_days_in_month:
Integer = 31

Used for validity checking.

1..1 Days_in_year: Integer = 365

1..1 Days_in_leap_year: Integer =
366

1..1 Max_days_in_year: Integer =
Days_in_leap_year

Used for validity checking.
Date of Issue: 20 Oct 2008 Page 22 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

http://www.cl.cam.ac.uk/~mgk25/iso-time.html

Support Information Model Assumed Types
Rev 1.6.1
1..1 Nominal_days_in_year:
Real = 365.24

Used for conversions of durations contain-
ing years to days and / or seconds.

1..1 Days_in_week: Integer = 7

1..1 Months_in_year: Integer = 12

1..1
Min_timezone_hour: Integer
ensure
Result = 12

Minimum hour value of a timezone (note
that the -ve sign is supplied in the
ISO8601_TIMEZONE class).

1..1
Max_timezone_hour: Integer
ensure
Result = 13

Maximum hour value of a timezone.

Functions Signature Meaning

valid_year (y: Integer):
Boolean
ensure
Result = y >= 0

True if y >= 0

valid_month (m: Integer):
Boolean
ensure
Result = m >= 1 and m <=
Months_in_year

True if m >= 1 and m <= Months_in_year

valid_day (y, m, d: Integer):
Boolean
ensure
Result = d >= 1 and d <=
days_in_month(m, y)

True if d >= 1 and d <= days_in_month(m,
y)

valid_hour (h, m, s: Integer):
Boolean
ensure
Result = (h >= 0 and h <
Hours_in_day) or (h =
Hours_in_day and m = 0 and s = 0)

True if (h >= 0 and h < Hours_in_day) or (h
= Hours_in_day and m = 0 and s = 0)

valid_minute (m: Integer):
Boolean
ensure
Result = m >= 0 and m <
Minutes_in_hour

True if m >= 0 and m < Minutes_in_hour

INTERFACE TIME_DEFINITIONS
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 23 of 66 Date of Issue: 20 Oct 2008

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Assumed Types Support Information Model
Rev 1.6.1
3.4.2 ISO8601_DATE Class

valid_second (s: Integer):
Boolean
ensure
Result = s >= 0 and s <
Seconds_in_minute

True if s >= 0 and s < Seconds_in_minute

valid_fractional_second (fs: Dou-
ble): Boolean
ensure
Result = fs >= 0.0 and fs < 1.0

True if fs >= 0.0 and fs < 1.0

Invariants

INTERFACE ISO8601_DATE

Purpose Represents an absolute point in time, as measured on the Gregorian calendar, and
specified only to the day.

Inherit ORDERED, TIME_DEFINITIONS

Function Signature Meaning

as_string: String ISO8601 string for date, in format
YYYYMMDD or YYYY-MM-DD, or a
partial invariant. See valid_iso8601_date for
validity.

year: Integer Year.

month: Integer
require
not month_unknown

Month in year.

day: Integer
require
not day_unknown

Day in month.

month_unknown: Boolean Indicates whether month in year is
unknown. If so, the date is of the form
“YYYY”.

day_unknown: Boolean Indicates whether day in month is unknown.
If so, and month is known, the date is of the
form “YYYY-MM” or “YYYYMM”.

is_partial: Boolean True if this date is partial, i.e. if day or more
is missing.

INTERFACE TIME_DEFINITIONS
Date of Issue: 20 Oct 2008 Page 24 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Support Information Model Assumed Types
Rev 1.6.1
3.4.3 ISO8601_TIME Class

is_extended: Boolean True if this date uses ‘-’ separators.

infix ‘<’ (other: like Current):
Boolean

Arithmetic comparison with other date. True
if this date is closer to the origin than other.

valid_iso8601_date
(s: String): Boolean

String is a valid ISO 8601 date, i.e. takes the
complete form:
• YYYYMMDD
or the extended form:
• YYYY-MM-DD
or one of the partial forms:
• YYYYMM
• YYYY
or the equivalent extended form:
• YYYY-MM
Where:
• YYYY is the string form of any positive

number in the range “0000” - “9999”
(zero-filled to four digits)

• MM is “01” - “12” (zero-filled to two dig-
its)

• DD is “01” - “31” (zero-filled to two digits)
The combinations of YYYY, MM, DD num-
bers must be correct with respect to the Gre-
gorian calendar.

Invariants

Year_valid: valid_year(year)
Month_valid: not month_unknown implies valid_month(month)
Day_valid: not day_unknown implies valid_day(year, month, day)
Partial_validity: month_unknown implies day_unknown

INTERFACE ISO8601_TIME

Purpose

Represents an absolute point in time from an origin usually interpreted as mean-
ing the start of the current day, specified to the second.

A small deviation to the ISO 8601:2004 standard in this class is that the time
24:00:00 is not allowed, for consistency with ISO8601_DATE_TIME.

Inherit ORDERED, TIME_DEFINITIONS

Function Signature Meaning

INTERFACE ISO8601_DATE
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 25 of 66 Date of Issue: 20 Oct 2008

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Assumed Types Support Information Model
Rev 1.6.1
as_string: String ISO8601 string for time, i.e. in form:
hhmmss[,sss][Z|±hh[mm]] or the extended
form: hh:mm:ss[,sss][Z|±hh[mm]], or a partial
invariant. See valid_iso8601_time for validity.

hour: Integer Hour in day, in 24-hour time.

minute: Integer
require
not minute_unknown

Minute in hour.

second: Integer
require
not second_unknown

Second in minute.

fractional_second: Double
require
not second_unknown

Fractional seconds.

has_fractional_second:
Boolean

True if the fractional_second part is signficant
(i.e. even if = 0.0).

timezone:
ISO8601_TIMEZONE

Time zone; may be Void.

minute_unknown: Boolean Indicates whether minute is unknown. If so, the
time is of the form “hh”.

second_unknown: Boolean Indicates whether second is unknown. If so and
month is known, the time is of the form
“hh:mm” or “hhmm”.

is_partial: Boolean True if this time is partial, i.e. if seconds or
more is missing.

is_extended: Boolean True if this time uses ‘:’ separators.

is_decimal_sign_comma:
Boolean

True if this time has a decimal part indicated by
‘,’ (comma) rather than ‘.’ (period).

infix ‘<’ (other: like Current):
Boolean

Arithmetic comparison with other time. True if
this date is closer to previous midnight than
other.

INTERFACE ISO8601_TIME
Date of Issue: 20 Oct 2008 Page 26 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Support Information Model Assumed Types
Rev 1.6.1
3.4.4 ISO8601_DATE_TIME Class

valid_iso8601_time
(s: String): Boolean

String is a valid ISO 8601 date, i.e. takes the
form:
• hhmmss[,sss][Z | ±hh[mm]]
or the extended form:
• hh:mm:ss[,sss][Z | ±hh[mm]]
or one of the partial forms:
• hhmm or hh
or the extended form:
• hh:mm
with an additional optional timezone indicator
of:
• Z or ±hh[mm]
Where:
• hh is “00” - “23” (0-filled to two digits)
• mm is “00” - “59” (0-filled to two digits)
• ss is “00” - “60” (0-filled to two digits)
• sss is any numeric string, representing an

optional fractional second
• Z is a literal meaning UTC (modern replace-

ment for GMT), i.e. timezone +0000
• ±hh[mm], i.e. +hhmm, +hh, -hhmm, -hh indi-

cating the timezone.

Invariants

Hour_valid: valid_hour(hour, minute, second)
Minute_valid: not minute_unknown implies valid_minute(minute)
Second_valid: not second_unknown implies valid_second(second)
Fractional_second_valid: has_fractional_second implies (not second_unknown
and valid_fractional_second(fractional_second))
Partial_validity: minute_unknown implies second_unknown

INTERFACE ISO8601_DATE_TIME

Purpose

Represents an absolute point in time, specified to the second.

Note that this class includes 2 deviations from ISO 8601:2004:

• for partial date/times, any part of the date/time up to the month may be
missing, not just seconds and minutes as in the standard;

• the time 24:00:00 is not allowed, since it would mean the date was
really on the next day.

Inherit ORDERED, TIME_DEFINITIONS

Function Signature Meaning

INTERFACE ISO8601_TIME
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 27 of 66 Date of Issue: 20 Oct 2008

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Assumed Types Support Information Model
Rev 1.6.1
as_string: String
ensure
valid_iso8601_date_time(Result)

ISO8601 string for date/time, in format
YYYYMMDDThhmmss[,sss][Z |
±hh[mm]] or in extended format
YYYY-MM-DDThh:mm:ss[,sss][Z |
±hh[mm]] or a partial variant; see
valid_iso8601_date_time() below.

year: Integer year

month: Integer
require
not month_unknown

month in year

day: Integer
require
not day_unknown

day in month

hour: Integer
require
not hour_unknown

hour in day

minute: Integer
require
not minute_unknown

minute in hour

second: Integer
require
not second_unknown

second in minute

fractional_second: Double
require
has_fractional_second

fractional seconds

has_fractional_second:
Boolean

True if the fractional_second part is signfi-
cant (i.e. even if = 0.0).

timezone: ISO8601_TIMEZONE Timezone; may be Void.

month_unknown: Boolean Indicates whether month in year is unknown.

day_unknown: Boolean Indicates whether day in month is unknown.

hour_unknown: Boolean Indicates whether hour in day is known.

minute_unknown: Boolean Indicates whether minute in hour is known.

second_unknown: Boolean Indicates whether minute in hour is known.

is_partial: Boolean True if this date is partial, i.e. if seconds or
more is missing.

INTERFACE ISO8601_DATE_TIME
Date of Issue: 20 Oct 2008 Page 28 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Support Information Model Assumed Types
Rev 1.6.1
3.4.5 ISO8601_TIMEZONE Class

is_decimal_sign_comma:
Boolean

True if this time has a decimal part indicated
by ‘,’ (comma) rather than ‘.’ (period).

infix ‘<’ (other: like Current):
Boolean

Arithmetic comparison with other date/time.
True if this date/time is closer to origin than
other.

is_extended: Boolean True if this date/time uses ‘-’, ‘:’ separators.

valid_iso8601_date_time
(s: String): Boolean

String is a valid ISO 8601 date-time, i.e.
takes the form:
• YYYYMMDDThhmmss[,sss]

[Z | ±hh[mm]]
or the extended form:
• YYYY-MM-DDThh:mm:ss[,sss]

[Z | ±hh[mm]]
or one of the partial forms:
• YYYYMMDDThhmm
• YYYYMMDDThh
or the equivalent extended forms:
• YYYY-MM-DDThh:mm
• YYYY-MM-DDThh
(meanings as in DV_DATE, DV_TIME) and
the values in each field are valid.

Invariants

Year_valid: valid_year(year)
Month_valid: valid_month(month)
Day_valid: valid_day(year, month, day)

Hour_valid: valid_hour(hour, minute, second)
Minute_valid: not minute_unknown implies valid_minute(minute)
Second_valid: not second_unknown implies valid_second(second)
Fractional_second_valid: has_fractional_second implies (not second_unknown
and valid_fractional_second(fractional_second))

Partial_validity_year: not month_unknown
Partial_validity_month: not month_unknown
Partial_validity_day: not day_unknown
Partial_validity_hour: not hour_unknown
Partial_validity_minute: minute_unknown implies second_unknown

INTERFACE ISO8601_TIMEZONE

Purpose Represents a timezone as used in ISO 8601.

INTERFACE ISO8601_DATE_TIME
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 29 of 66 Date of Issue: 20 Oct 2008

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Assumed Types Support Information Model
Rev 1.6.1
3.4.6 ISO8601_DURATION Class

Inherit TIME_DEFINITIONS

Function Signature Meaning

as_string: String ISO8601 timezone string, in format
• Z | ±hh[mm]
where:
• hh is “00” - “23” (0-filled to two digits)
• mm is “00” - “59” (0-filled to two digits)
• Z is a literal meaning UTC (modern

replacement for GMT), i.e. timezone +0000

hour: Integer Hour part of timezone - in the range 00 - 13

minute: Integer
require
not minute_unknown

Minute part of timezone. Generally 00 or 30.

sign: Integer Direction of timezone expresssed as +1 or -1.

is_gmt: Boolean True if timezone is UTC, i.e. +0000

minute_unknown: Boolean Indicates whether minute part known.

Invariants

Min_hour_valid: sign = -1 implies hour > 0 and hour <= Min_timezone_hour
Max_hour_valid: sign = 1 implies hour > 0 and hour <= Max_timezone_hour
Minute_valid: not minute_unknown implies valid_minute(minute)
Sign_valid: sign = 1 or sign = -1

INTERFACE ISO8601_DURATION

Purpose Represents a period of time corresponding to a difference between two time-
points.

Inherit ORDERED, TIME_DEFINITIONS

Function Signature Meaning

as_string: String ISO8601 string for duration, in format
• P[nnY][nnM][nnW][nnD][T[nnH][nnM][nnS]]

years: Integer number of years of nominal 365-day length

months: Integer number of months of nominal 30 day length

weeks: Integer number of 7 day weeks

INTERFACE ISO8601_TIMEZONE
Date of Issue: 20 Oct 2008 Page 30 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Support Information Model Assumed Types
Rev 1.6.1
days: Integer number of 24 hour days

hours: Integer number of 60 minute hours

minutes: Integer number of 60 second minutes

seconds: Integer number of seconds

fractional_second: Double fractional seconds

infix ‘<’ (other: like Current):
Boolean

Arithmetic comparison with other duration.
True if this duration is smaller than other.

valid_iso8601_duration
(s: String): Boolean

String is a valid ISO 8601 duration, i.e. takes
the form:
• P[nnY][nnM][nnW][nnD][T[nnH][nnM][nnS]]
Where each nn represents a number of years,
months, etc. nnW represents a number of 7-
day weeks.
Note: allowing the W designator in the same
expression as other designators is an excep-
tion to the published standard, but necessary
in clinical information (typically for repre-
senting pregnancy duration).

is_decimal_sign_comma:
Boolean

True if this time has a decimal part indicated
by ‘,’ (comma) rather than ‘.’ (period).

to_seconds: Double Total number of seconds equivalent (includ-
ing fractional) of entire duration.

Invariants

years_valid: years >= 0
months_valid: months >= 0
weeks_valid: weeks >= 0
days_valid: days >= 0
hours_valid: hours >= 0
minutes_valid: minutes >= 0
seconds_valid: seconds >= 0
fractional_second_valid: fractional_second >= 0.0 and fractional_second < 1.0

INTERFACE ISO8601_DURATION
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 31 of 66 Date of Issue: 20 Oct 2008

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Identification Package Support Information Model
Rev 1.6.1
4 Identification Package

4.1 Overview
The rm.support.identification package describes a model of references and identifiers for
information entities and is illustrated in FIGURE 5.

4.1.1 Requirements
Identification of entities both in the real world and in information systems is a non-trivial problem.
The needs for identification across systems in a health information environment include the follow-
ing:

• real world identifiers such as social security numbers, veterans affairs ids etc can be
recorded as required by health care facilities, enterprise policies, or legislation;

• identifiers for informational entities which represent real world entities or processes should
be unique;

• it should be possible to determine if two identifiers refer to information entities that repre-
sent the same real world entity, even if instances of the information entities are maintained
in different systems;

• versions or changes to real-world entity-linked informational entities (which may create
new information instances) should be accounted for in two ways:

FIGURE 5 rm.support.identification Package

OBJECT_REF
namespace[1]: String
type[1]: String

PARTY_REF

identification

ARCHETYPE_ID

qualified_rm_entity: String
rm_originator: String
rm_name: String
rm_entity: String
domain_concept: String
specialisation: String
version_id: String

ACCESS_
GROUP_REF

ISO_OID

id

1

TERMINOLOGY_ID

name: String
version_id: String

OBJECT_ID
value[1]: String

UUID

UID
value[1]: String

HIER_OBJECT_IDVERSION_TREE_ID
value[1]: String
trunk_version: String
is_branch: Boolean
branch_number: String
branch_version: String

OBJECT_VERSION_ID

object_id: UID
version_tree_id:
VERSION_TREE_ID
creating_system_id: UID
is_branch: Boolean

LOCATABLE_REF
path[0..1]: String
as_uri: String

id

1

INTERNET_ID

GENERIC_ID
scheme[1]: String

UID_BASED_ID

root: UID
extension: String
has_extension: Boolean

TEMPLATE_ID
Date of Issue: 20 Oct 2008 Page 32 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Support Information Model Identification Package
Rev 1.6.1
- it should be possible to tell if two identifiers refer to distinct versions of the same
informational entity in the same version tree;

- it should not be possible to confuse same-named versions of informational entities
maintained in multiple systems which purport to represent the same real world
entity. E.g. there is no guarantee that two systems’ “latest” version of the Person
“Dr Jones” is the same.

Medico-legal use of information relies on previous states of information being
distinguishable from other previous states and the current state.

• It should be possible for an entity in one system or service (such as the EHR) to refer to an
entity in another system or service in such a way that:

- the target of the reference is easily finable within the shared environment, and
- the reference does is valid regardless of the physical architecture of servers and

applications.

The following subsections describe some of the features and challenges of identification.

Identification of Real World Entities (RWEs)
Real world entities such as people, car engines, invoices, and appointments can all be assigned identi-
fiers. Although many of these are designed to be unique within a jurisdiction, they are often not, due
to data entry errors, bad design (ids that are too small or incorporate some non-unique characteristic
of the identified entities), bad process (e.g. non-synchronised id issuing points); identity theft (e.g. via
theft of documents of proof or hacking). In general, while some real world identifiers (RWIs) are
“nearly unique”, none can be guaranteed so. It should also be the case that if two RWE identifiers are
equal, they refer to the same RWE, but this is often not the case. For practical purposes, RWIs cannot
be regarded as computationally safe for making the inferences described here.

Identification of Informational Entities (IEs)
As soon as information systems are used to record facts about RWEs, the situation becomes more
complex because of the intangible nature of information. In particular:

• the same RWE can be represented simultaneously on more than one system (‘spatial multi-
plicity’);

• the same RWE may be represented by more than one “version” of the same IE in a system
(‘temporal multiplicity’).

At first sight, it appears that there can also be purely informational entities, i.e. IEs which do not refer
to any RWE, such as books, online-only documents and software. However, as soon as one considers
an example it becomes clear that there is always a notional ‘definitive’ or ‘authoritative’ (i.e. trusted)
version of every such entity. These entities can better be understood as ‘virtual RWEs’. Thus it can
still be said that multiple IEs may refer to any given RWE.

The underlying reason for the multiplicity of IEs is that ‘reality’ - time and space - in computer sys-
tems is not continuous but discrete, and each ‘entity’ is in fact just a snapshot of certain attribute val-
ues of a RWE, at a point in time, in a particular system. If identifiers are assigned to IEs without
regard to versions or duplicates, then no assertion can be made about the identified RWE when two IE
ids are compared.

Identification of Versions
The notion of ‘versioning’ applies only to informational entities, i.e. distinct instances of content each
representing a snapshot of some logical entity. Where such instances are stored and managed in ver-
sioned containers within a versioning system of some kind, explicit identification of the versions is
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 33 of 66 Date of Issue: 20 Oct 2008

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Identification Package Support Information Model
Rev 1.6.1
required. The requirements are discussed in detail in the Common IM, change_control package.
They can be summarised as follows:

• it must be possible to distinguish two versions of the same logical entity, i.e. know from the
identifier if they are the same or different versions of the same thing;

• it must be possible to distinguish two versions of the same logical entity created in two dis-
tinct systems;

• it must be possible to tell the relationship between the items in a versioned lineage, from the
version identifiers.

Referencing of Informational Entities
Within a distributed information environment, there is a need for entities not connected by direct ref-
erences in the same memory space to be able to refer to each other. There are two competing require-
ments:

• that the separation of objects in a distributed computing environment not compromise the
semantics of the model;

• that different types of information can be managed relatively independently; for example
EHR and demographic information can be managed by different groups in an organisation
or community, each with at least some freedom to change implementation and model
details.

4.2 Design
This package models only informational identifiers, i.e. transparent identifiers understood by
openEHR or related computational systems. Real World Entity Identifiers such as driver’s license
numbers are modelled using the data type DV_IDENTIFIER. This is not to imply that such identifiers
are any less systematic or well-managed than the system identifiers defined here, only that from the
point of view of openEHR, they have the same status as other informational attributes such as name,
address etc of a Person.

A key design decision has been to choose a string representation for all identifiers, with subparts
being made available by appropriate functions which perform simple parsing on the string. This
ensures that the data representation of identifiers (e.g. in XML) is as small as possible, while not los-
ing object-oriented typing.

4.2.1 Primitive Identifiers
Three kinds of types are defined in this package. The abstract UID type and its subtypes correspond to
permanent, computationally reliable, primitive identifiers. Such identifiers are regarded as ‘primitive’
because they are treated as having no further internal structure, in the sense that part of such an iden-
tifier is not in general meaningful. The three subtypes UUID, ISO_OID and INTERNET_ID all have
these properties, and are commonly accepted ways of uniquely identifying entities in computer sys-
tems. In openEHR (and generally in health informatics) they are usually used as parts of other identi-
fiers.

A consequence of the string representation approach used in these classes is that to set an attribute of
type UID from a string value, as would be done when reading from a database, deserialising from
XML or another text form, a piece of code that inspects the string structure has to be used in order to
decide which of the subtypes of UID it is. This is a safe thing to do, since all three subtypes have
mutually exclusive string patterns, and can easily be distinguished.
Date of Issue: 20 Oct 2008 Page 34 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Support Information Model Identification Package
Rev 1.6.1
4.2.2 Composite Identifiers
The OBJECT_ID type and its hierarchy of subtypes define all of the identifier types used within
openEHR systems. Most of these have a multi-part structure, and some are ‘meaningful’ i.e. human
readable. The identifier types can be used to represent identifier values that fall into two groups
semantically: those defined by openEHR (which may incorporate generic standard identifiers, such as
ISO Oids etc) and those defined by external organisations. The groups are as shown in the following
table. Identifiers whose form is defined by the HIER_OBJECT_ID type are used both by openEHR
and many other organisations.

4.2.2.1 UID-based Identifiers
The abstract type UID_BASED_ID and its two subtypes HIER_OBJECT_ID and
OBJECT_VERSION_ID provide respectively, UID-based identifiers for non-versioned and versioned
items. The design of the latter subtype is explained in the openEHR Common IM, change_control
package.

4.2.2.2 Archetype Identifiers
The ARCHETYPE_ID subtype defines a multi-axial identifier for archetypes, meaning that each identi-
fier instance denotes a single archetype within a multi-dimensional space. The space is can be thought
of as 3-dimensional, or as a versioned 2-dimensional space, consisting of the following axes:

• reference model entity, i.e. target of archetype, defined as:
- name of model issuer;
- name of model (there may be more than one from the same issuer);
- name of concept in model, i.e. class name

• domain concept;
• version.

The three outer sections are delimited by ‘.’ characters, while the parts of the first section are delim-
ited by ‘-’ characters. As with any multi-axial identifier, the underlying principle of an archetype
identifier is that all parts of the identifier must be able to be considered immutable. This means that no
variable characteristic of an archetype (e.g. accrediting authority, which might change due to later
accreditation by another authority, or may be multiple) can be included in its identifier. The explicit
inclusion of version as part of the identifier means that two ‘versions’ of an archetype are actually two
distinct archetypes. (The rules for archetype versions, revisions and other variants are given in the
openEHR Archetype Semantics specification1.)

Examples of archetype identifiers include:
• openEHR-EHR-SECTION.physical_examination.v2
• openEHR-EHR-SECTION.physical_examination-prenatal.v1
• Hl7-RIM-Act.progress_note.v1
• openEHR-EHR-OBSERVATION.progress_note-naturopathy.v2

openEHR-defined identifiers Externally defined identifiers
OBJECT_VERSION_ID TERMINOLOGY_ID
ARCHEYTPE_ID GENERIC_ID
TEMPLATE_ID HIER_OBJECT_ID
HIER_OBJECT_ID

1. See http://www.openehr.org/releases/1.0.1/architecture/am/archetype_semantics.pdf
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 35 of 66 Date of Issue: 20 Oct 2008

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

http://www.openehr.org/releases/1.0.1/architecture/am/archetype_semantics.pdf

Identification Package Support Information Model
Rev 1.6.1
The grammar of archetype identifiers is given below in section 4.3.10 on page 44.

WARNING:some archetype authoring tools have historically allowed a non-conforming version part
within archetype identifiers which included the lifecycle status. This has led to some
archetypes having an identifier whose version part is of the form ‘.v1draft’ or similar.
The openEHR Foundation will publish guidelines and a timeline on its website for
dealing with this problem. New and existing archetype tools may have to support this
exception, depending on where they are to be used, and it is recommended that it at least
be supported via a command line switch or option. Where such non-conforming
archetypes are re-used within a new environment, the identifier should be corrected.

4.2.2.3 Template Identifiers
The template identifier is similar in intention to the achetype identifier - it provides a multi-axial,
readable identifier in addition to any UID-style of identifier that may be used. In this release, the
exact structure has not been defined, but a current proposal is as follows:

• authoring organisation reverse domain name;
• identifier of reference model class being templated;
• logical name of the template;
• version identifier in the form ‘vn’ where n is a numerical version identifier.

This would lead to identifiers like the following:
• uk.nhs.cfh:openehr-EHR-COMPOSITION.admission_ed.v5

A firm form of template identifiers will be described in a future release.

4.2.2.4 Terminology Identifiers
The TERMINOLOGY_ID subtype defines a globally unique single string identifier for terminologies.
Terminology identifier values may include a version, either as part of the name, and/or according to
the syntax defined in section 4.3.12 below. Examples of terminology identifiers include:

• “SNOMED-CT”
• “ICD9(1999)”

Currently the best authoritative source for the name part of the identifier (i.e. the part excluding the
optional version part in parentheses) is the US National Library of Medicine UMLS identifiers for
included terminologies - see http://www.nlm.nih.gov/research/umls/metaa1.html.

The scheme defined by the TERMINOLOGY_ID class provides for the situation where major ‘versions’
of a terminology such as the World Health Organisation’s ‘ICD10’ and ‘ICD10AM’ (AM = ‘Austral-
ian modifications’) can accommodate a finer grain of versioning or revisioning, e.g.:

• “ICD10AM(3rd_ed)”
• “ICD10AM(4th_ed)”

The version part of a terminology identifier is in theory only absolutely necessary for those terminol-
ogies which break the rule that the concept being identified with a code loses or changes its meaning
over versions of the terminology. This should not be the case for modern terminologies and ontolo-
gies, particularly those designed since the publication of Cimino’s ‘desiderata’ [1] of which the prin-
ciple of ‘concept permanance’ is applicable here - “A concept's meaning cannot change and it cannot
be deleted from the vocabulary”. However, there may be older terminologies, or specialised terminol-
ogies which may not have obeyed these rules, but which are still used; version ids should always be
used for these. At a practical level, versions may be included routinely in some systems to support the
potential medico-legal need to prove that a) a given code was in fact defined in the terminology (it
Date of Issue: 20 Oct 2008 Page 36 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

http://www.nlm.nih.gov/research/umls/metaa1.html

Support Information Model Identification Package
Rev 1.6.1
may not have existed in an earlier edition) and b) that the meaning assmued in the system was indeed
the one assigned to it in the particular version or edition.

Equivalence
Although there are anomalies in some published terminologies and between some versions or editions
of the same terminology, two terminology identifiers that are the same, disregarding the version part,
can usually be considered as semantic equivalents in the terminology world. However, depending on
which source of strings have been chosen for the name part of the identifier, two different identifiers
may also indicate the same terminology, e.g. “ICD10AM_2000” (NLM identifier used in UMLS) and
“ICD10AM(2nd_ed)” refer to the same thing.

4.2.2.5 Identifying Versions within openEHR Versioned Containers
The OBJECT_VERSION_ID defines the semantics of the scheme used in openEHR for identifying
versions within a versioned container, and uses a three-part identifier, consisting of:

• object_id: the identifier of the version container, in the form of an UID;
• version_tree_id: the location in the version tree, as a 1- or 3-part numeric identifier, where

the latter variant expresses branching; this is modelled using the VERSION_TREE_ID type;
• creating_system_id: the identifier of the system in which this version was created, or type

UID.

Under this scheme, multiple versions in the same container all have the same value for object_id,
while their location in the version tree is given by the combination of the version tree identifier and
the identifier of the creating system.

The requirements on the third part of the identifier are that it be unique per system, and that it be easy
to obtain or generate. It is also helpful if it is a meaningful identifier. The two most practical candi-
dates appear to be GUIDs (which are not meaningful, but are easy to generate) and reverse internet
domain identifiers, as recommended in [3] (these are easy to determine if the system has an internet
address, and are meaningful and directly processible, however unconnected systems pose a problem).
ISO Oids might also be used. All of these identifier types are accommodated via the use of UID.

A full explanation of the version identification scheme and its capabilities is given in the
change_control section of the Common IM.

4.2.2.6 Generic and External Identifiers
The GENERIC_ID type provides for identifiers of schemes other than defined concretely in the
rm.support.identification package. It has a single method scheme, which may be used to
record the identifier type. The names of schemes are not currently controlled.

4.2.2.7 Hierarchical Identifiers
The HIER_OBJECT_ID type is defined to support hierarchical identifiers, often based on ISO Oids or
other similar machine-readable and -resolvable schemes.

4.2.2.8 Composite Identifiers and Case
All composite identifiers should follow two rules with regard to case, namely:

• to be case-preserving - not change case due to persistence, copying, transfer or other compu-
tation processes;

• to be case-insensitive - two identifiers identical apart from case are considered to be identi-
cal, and therefore to identify the same thing.

The practical consequences of these rules are as follows:
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 37 of 66 Date of Issue: 20 Oct 2008

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Identification Package Support Information Model
Rev 1.6.1
• mixed-case identifiers may be used, such as archetype identifiers, mixed-case reverse
domain identifiers (the INTERNET_ID type);

• the original case chosen in the letters of identifiers on creation within an openEHR system
should be as published by the relevant issuing organisation (e.g. NLM UMLS terminology
names are all upper case);

• if identifiers are used as part of filenames within computer file systems, care must be taken
to create and preserve filenames correctly. For this reason, software usually has to handle
filename creation and modification differently on Unix-style operating systems, which are
case-sensitive (and therefore case-preserving), and Windows-style operating systems, which
are case-insensitive but usually case-preserving.

These rules do not apply to any identifier constructed in a language in which case does not exist as a
concept. For this reason, for identifiers translated in and out of the Turkish language (and possibly in
smaller related languages), care must be taken with the ‘I/i’ characters.

4.2.2.9 Composite Identifiers and Language
In all of the ‘meaningful’ identifier types above, with the posible exception of GENERIC_ID, the
human-readable identifier sections are assumed to use only the basic latin character set, possibly with
the addition of other special characters as allowed by the production rules defined below for each
identifier. In most cases, the textual parts of these identifiers will be words from the English language,
or else they will be recognisable words from other languages, where necessary alliterated into the
latin alphabet. Accented and other diacritical letter variants are not allowed. This limitation is made in
the interests of practical computability of identifiers, and is in common with class and attribute nam-
ing in shared UML models in the standards world, and also with internet domain names and internet
URIs.

4.2.3 References
All OBJECT_IDs are used as identifier attributes within the thing they identify, in the same way as a
database primary key. To refer to an identified object from another object, an instance of the class
OBJECT_REF should generally be used, in the same way as a database foreign key. The class
OBJECT_REF is provided as a means of distributed referencing, and includes the object namespace
(typically 1:1 with some service, such as “terminology”) and type. The general principle of object ref-
erences is to be able to refer to an object available in a particular namespace or service. Usually they
are used to refer to objects in other services, such as a demographic entity from within an EHR, but
they may be used to refer to local objects as well. The type may be the concrete type of the referred-to
object (e.g. “GP”) or any proper ancestor (e.g. “PARTY”).

4.3 Class Descriptions

4.3.1 UID Class

CLASS UID (abstract)

Purpose
Abstract parent of classes representing unique identifiers which identify informa-
tion entities in a durable way. UIDs only ever identify one IE in time or space and
are never re-used.

HL7 The HL7v3 UID Data type.
Date of Issue: 20 Oct 2008 Page 38 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Support Information Model Identification Package
Rev 1.6.1
4.3.2 ISO_OID Class

4.3.3 UUID Class

Attributes Signature Meaning

value: String The value of the id.

Invariant Value_exists: value /= Void and then not value.empty

CLASS ISO_OID

Purpose

Model of ISO’s Object Identifier (oid) as defined by the standard ISO/IEC 8824 .
Oids are formed from integers separated by dots. Each non-leaf node in an Oid
starting from the left corresponds to an assigning authority, and identifies that
authority’s namespace, inside which the remaining part of the identifier is locally
unique.

HL7 The HL7v3 OID Data type.

Inherit UID

Functions Signature Meaning

Invariant

CLASS UUID

Purpose

Model of the DCE Universal Unique Identifier or UUID which takes the form of
hexadecimal integers separated by hyphens, following the pattern 8-4-4-4-12 as
defined by the Open Group, CDE 1.1 Remote Procedure Call specification,
Appendix A. Also known as a GUID.

HL7 The HL7v3 UUID Data type.

Inherit UID

Functions Signature Meaning

Invariant

CLASS UID (abstract)
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 39 of 66 Date of Issue: 20 Oct 2008

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Identification Package Support Information Model
Rev 1.6.1
4.3.4 INTERNET_ID Class

4.3.4.1 Syntax
According to IETF RFC1034, the syntax of a domain name follows the BNF grammar:

domain: subdomain | ‘ ’
subdomain: label | subdomain ‘.’ label
label: letter [[ldh-str] let-dig]
ldh-str: let-dig-hyp | let-dig-hyp ldh-str
let-dig-hyp: let-dig | ‘-’
let-dig: letter | digit

letter: any one of the 52 alphabetic characters A through Z in
upper case and a through z in lower case

digit: any one of the ten digits 0 through 9

It can also be expressed using the regular expression:
[a-zA-Z]([a-zA-Z0-9-]*[a-zA-Z0-9])?(\.[a-zA-Z]([a-zA-Z0-9-]*[a-zA-Z0-9]))*

4.3.5 OBJECT_ID Class

CLASS INTERNET_ID

Purpose
Model of a reverse internet domain, as used to uniquely identify an internet
domain. In the form of a dot-separated string in the reverse order of a domain
name, specified by IETF RFC 1034 (http://www.ietf.org/rfc/rfc1034.txt).

Inherit UID

Functions Signature Meaning

Invariant

CLASS OBJECT_ID (abstract)

Purpose
Ancestor class of identifiers of informational objects. Ids may be completely
meaningless, in which case their only job is to refer to something, or may carry
some information to do with the identified object.

Use

Object ids are used inside an object to identify that object. To identify another
object in another service, use an OBJECT_REF, or else use a UID for local objects
identified by UID. If none of the subtypes is suitable, direct instances of this class
may be used.

Attributes Signature Meaning

value: String The value of the id in the form defined below.

Invariant Value_exists: value /= Void and then not value.empty
Date of Issue: 20 Oct 2008 Page 40 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

http://www.ietf.org/rfc/rfc1034.txt

Support Information Model Identification Package
Rev 1.6.1
4.3.6 UID_BASED_ID Class

4.3.6.1 Identifier Syntax
The syntax of the value attribute by default follows the following production rules (EBNF):

value: root [‘::’ extension]
root: uid -- see UID above
extension: string

4.3.7 HIER_OBJECT_ID Class

CLASS UID_BASED_ID (abstract)

Purpose
Abstract model of UID-based identifiers consisting of a root part and an optional
extension; lexical form:
root ‘::’ extension

Inherit OBJECT_ID

Functions Signature Meaning

1..1

root: UID The identifier of the conceptual namespace in
which the object exists, within the identifica-
tion scheme.
Returns the part to the left of the first ‘::’ sep-
arator, if any, or else the whole string.

1..1

extension: String Local identifier of the object, if given, within
the context of the root identifier.
Returns the part to the right of the first ‘::’
separator if any, or else an empty String.

has_extension: Boolean
ensure
not extension.is_empty implies

Result

True if extension is not empty.

Invariant
Root_valid: root /= Void
Extension_validity: extension /= Void
Has_extension_validity: extension.is_empty xor has_extension

CLASS HIER_OBJECT_ID

Purpose Concrete type corresponding to hierarchical identifiers of the form defined by
UID_BASED_ID.

HL7 The HL7v3 II Data type.

Inherit UID_BASED_ID

Functions Signature Meaning
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 41 of 66 Date of Issue: 20 Oct 2008

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Identification Package Support Information Model
Rev 1.6.1
4.3.8 OBJECT_VERSION_ID Class

4.3.8.1 Identifier Syntax
The string form of an OBJECT_VERSION_ID stored in its value attribute consists of three segments
separated by double colons (“::”), i.e. (EBNF):

value: object_id ‘::’ creating_system_id ‘::’ version_tree_id
object_id: uid -- see UID below
creating_system_id:uid -- see UID below
version_tree_id: -- see VERSION_TREE_ID below

An example is as follows:
F7C5C7B7-75DB-4b39-9A1E-C0BA9BFDBDEC::87284370-2D4B-
4e3d-A3F3-F303D2F4F34B::2

Invariant

CLASS OBJECT_VERSION_ID

Purpose
Globally unique identifier for one version of a versioned object; lexical form:
object_id ‘::’ creating_system_id ‘::’ version_tree_id

Inherit UID_BASED_ID

Functions Signature Meaning

1..1

object_id: UID Unique identifier for logical object of
which this identifier identifies one version;
normally the object_id will be the unique
identifier of the version container contain-
ing the version referred to by this
OBJECT_VERSION_ID instance.

1..1

version_tree_id:
VERSION_TREE_ID

Tree identifier of this version with respect
to other versions in the same version tree,
as either 1 or 3 part dot-separated numbers,
e.g. “1”, “2.1.4”.

1..1
creating_system_id: UID Identifier of the system that created the

Version corresponding to this Object ver-
sion id.

is_branch: Boolean True if this version identifier represents a
branch.

Invariants
Object_valid: object_id /= Void
Version_tree_id_valid: version_tree_id /= Void
creating_system_id_valid: creating_system_id /= Void

CLASS HIER_OBJECT_ID
Date of Issue: 20 Oct 2008 Page 42 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Support Information Model Identification Package
Rev 1.6.1
4.3.9 VERSION_TREE_ID Class

4.3.9.1 Syntax
The format of the value attribute is (EBNF):

value: trunk_version [‘.’ branch_number ‘.’ branch_version]
trunk_version: { digit }+
branch_number: { digit }+
branch_version: { digit }+
digit: [0-9]

CLASS VERSION_TREE_ID

Purpose
Version tree identifier for one version. Lexical form:
trunk_version [‘.’ branch_number ‘.’ branch_version]

Attributes Signature Meaning

1..1 value: String String form of this identifier.

Functions Signature Meaning

1..1 trunk_version: String Trunk version number; numbering starts at 1.

0..1 branch_number: String Number of branch from the trunk point; number-
ing starts at 1.

0..1 branch_version: String Version of the branch; numbering starts at 1.

1..1 is_branch: Boolean True if this version identifier represents a branch,
i.e. has branch_number and branch_version parts.

1..1 is_first: Boolean True if this version identifier corresponds to the
first version, i.e. trunk_version = “1”

Invariants

Value_valid: value /= Void and then not value.is_empty
Trunk_version_valid: trunk_version /= Void and then trunk_version.is_integer
and then trunk_version.as_integer >= 1
Branch_number_valid: branch_number /= Void implies
branch_number.is_integer and then branch_number.as_integer >= 1
Branch_version_valid: branch_version /= Void implies
branch_version.is_integer and then branch_version.as_integer >= 1
Branch_validity: (branch_number = Void and branch_version = Void) xor
(branch_number /= Void and branch_version /= Void)
Is_branch_validity: is_branch xor branch_number = Void
Is_first_validity: not is_first xor trunk_version.is_equal(“1”)
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 43 of 66 Date of Issue: 20 Oct 2008

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Identification Package Support Information Model
Rev 1.6.1
4.3.10 ARCHETYPE_ID Class

4.3.10.1 Archetype ID Syntax
The syntax of an ARCHETYPE_ID is formally defined as follows:

CLASS ARCHETYPE_ID

Purpose Multi-axial structural identifier type for archetypes. The syntax is defined by a
small grammar and also expressed as a regular expression pattern.

Inherit OBJECT_ID

Functions Signature Meaning

1..1
qualified_rm_entity: String Globally qualified reference model entity,

e.g. “openehr-composition-OBSERVA-
TION”.

1..1

domain_concept: String Name of the concept represented by this
archetype, including specialisation, e.g.
“biochemistry_result-choles-
terol”.

1..1
rm_originator: String Organisation originating the reference model

on which this archetype is based, e.g.
“openehr”, “cen”, “hl7”.

1..1 rm_name: String Name of the reference model, e.g. “rim”,
“ehr_rm”, “en13606”.

1..1

rm_entity: String Name of the ontological level within the ref-
erence model to which this archetype is tar-
geted, e.g. for openEHR, “folder”,
“composition”, “section”, “entry”.

1..1
specialisation: String Name of specialisation of concept, if this

archetype is a specialisation of another arche-
type, e.g. “cholesterol”.

1..1 version_id: String Version of this archetype.

Invariant

Qualified_rm_entity_valid: qualified_rm_entity /= Void and then not
qualified_rm_entity.is_empty
Domain_concept_valid: domain_concept /= Void and then not
domain_concept.is_empty
Rm_originator_valid: rm_originator /= Void and then not
rm_originator.is_empty
Rm_name_valid: rm_name /= Void and then not rm_name.is_empty
Rm_entity_valid: rm_entity /= Void and then not rm_entity.is_empty
Specialisation_valid: specialisation /= Void implies not specialisation.is_empty
Version_id_valid: version_id /= Void and then not version_id.is_empty
Date of Issue: 20 Oct 2008 Page 44 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Support Information Model Identification Package
Rev 1.6.1
-------- production rules --------
archetype_id: qualified_rm_entity ‘.’ domain_concept ‘.’ version_id

qualified_rm_entity: rm_originator ‘-’ rm_name ‘-’ rm_entity
rm_originator: V_ALPHANUMERIC_NAME
rm_name: V_ALPHANUMERIC_NAME
rm_entity: V_ALPHANUMERIC_NAME

domain_concept: concept_name { ‘-’ specialisation }*
concept_name: V_ALPHANUMERIC_NAME
specialisation: V_ALPHANUMERIC_NAME

version_id: ‘v’ V_NONZERO_DIGIT [V_NUMBER]

-------- lexical patterns --------
V_ALPHANUMERIC_NAME: [a-zA-Z][a-zA-Z0-9_]+
V_NONZERO_DIGIT: [1-9]
V_NUMBER: [0-9]+

The field meanings are as follows:

rm_originator: id of organisation originating the reference model on which this archetype is
based;

rm_name: id of the reference model on which the archetype is based;
rm_entity: ontological level in the reference model;
domain_concept: the domain concept name, including any specialisations;
version_id: numeric version identifier.

The PERL regular expression equivalent of the above is as follows:
[a-zA-Z]\w+(-[a-zA-Z]\w+){2}\.[a-zA-Z]\w+(-[a-zA-Z]\w+)*\.v[1-9]\d*

The classic regular expression equivalent of this is generated from the above with the following sub-
stitutions:

\w -> [a-zA-Z0-9_]
\d -> [0-9]

4.3.11 TEMPLATE_ID Class

CLASS TEMPLATE_ID

Purpose Identifier for templates. Lexical form to be determined.

Inherit OBJECT_ID

Functions Signature Meaning

Invariant
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 45 of 66 Date of Issue: 20 Oct 2008

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Identification Package Support Information Model
Rev 1.6.1
4.3.12 TERMINOLOGY_ID Class

4.3.12.1 Identifier Syntax
The syntax of the value attribute is as follows:

-------- production rules --------
terminology_id: name [‘(’ version ‘)’]
name: V_NAME
version: V_VERSION

-------- lexical patterns --------
V_NAME: [a-zA-Z][a-zA-Z0-9_-/+]+
V_VERSION: [a-zA-Z0-9][a-zA-Z0-9_-/.]+

4.3.13 GENERIC_ID Class

CLASS TERMINOLOGY_ID

Purpose

Identifier for terminologies such accessed via a terminology query service. In this
class, the value attribute identifies the Terminology in the terminology service,
e.g. “SNOMED-CT”. A terminology is assumed to be in a particular language,
which must be explicitly specified.

The value if the id attribute is the precise terminology id identifier, including
actual release (i.e. actual “version”), local modifications etc; e.g. “ICPC2”.

Lexical form:
name [‘(’ version ‘)’]

Inherit OBJECT_ID

Functions Signature Meaning

1..1

name: String Return the terminology id (which includes the
“version” in some cases). Distinct names corre-
spond to distinct (i.e. non-compatible) terminol-
ogies. Thus the names “ICD10AM” and
“ICD10” refer to distinct terminologies.

1..1 version_id: String Version of this terminology, if versioning sup-
ported, else the empty string.

Invariants Name_valid: name /= Void and then not name.is_empty
Version_id_valid: version_id /= Void

CLASS GENERIC_ID

Purpose
Generic identifier type for identifiers whose format is othterwise unknown to
openEHR. Includes an attribute for naming the identification scheme (which may
well be local).

Inherit OBJECT_ID
Date of Issue: 20 Oct 2008 Page 46 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Support Information Model Identification Package
Rev 1.6.1
4.3.14 OBJECT_REF Class

attributes Signature Meaning

1..1

scheme: String Name of the scheme to which this identifier
conforms. Ideally this name will be recognisa-
ble globally but realistically it may be a local ad
hoc scheme whose name is not controlled or
standardised in any way.

Invariants Scheme_valid: scheme /= Void and then not scheme.is_empty

CLASS OBJECT_REF

Purpose

Class describing a reference to another object, which may exist locally or be
maintained outside the current namespace, e.g. in another service. Services are
usually external, e.g. available in a LAN (including on the same host) or the inter-
net via Corba, SOAP, or some other distributed protocol. However, in small sys-
tems they may be part of the same executable as the data containing the Id.

Attributes Signature Meaning

1..1 id: OBJECT_ID Globally unique id of an object, regardless of
where it is stored.

1..1

namespace: String Namespace to which this identifier belongs in
the local system context (and possibly in any
other openEHR compliant environment) e.g.
“terminology”, “demographic”. These names
are not yet standardised. Legal values for the
namespace are
“local” | “unknown” | “[a-zA-
Z][a-zA-Z0-9_-:/&+?]*”

1..1

type: String Name of the class (concrete or abstract) of
object to which this identifier type refers, e.g.
“PARTY”, “PERSON”, “GUIDELINE” etc.
These class names are from the relevant ref-
erence model. The type name “ANY” can be
used to indicate that any type is accepted (e.g.
if the type is unknown).

Invariant
Id_exists: id /= Void
Namespace_exists: namespace /= Void and then not namespace.is_empty
Type_exists: type /= Void and then not type.is_empty

CLASS GENERIC_ID
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 47 of 66 Date of Issue: 20 Oct 2008

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Identification Package Support Information Model
Rev 1.6.1
4.3.15 ACCESS_GROUP_REF Class

4.3.16 PARTY_REF Class

4.3.17 LOCATABLE_REF Class

CLASS ACCESS_GROUP_REF

Purpose Reference to access group in an access control service.

Inherit OBJECT_REF

Functions Signature Meaning

Invariant Type_validity: type.is_equal(“ACCESS_GROUP”)

CLASS PARTY_REF

Purpose

Identifier for parties in a demographic or identity service. There are typically a
number of subtypes of the PARTY class, including PERSON, ORGANISATION, etc.
Abstract supertypes are allowed if the referenced object is of a type not known by
the current implementation of this class (in other words, if the demographic model
is changed by the addition of a new PARTY or ACTOR subtypes, valid
PARTY_REFs can still be constructed to them).

Inherit OBJECT_REF

Functions Signature Meaning

Invariant
Type_validity: type.is_equal(“PERSON”) or type.is_equal(“ORGANISATION”)
or type.is_equal(“GROUP”) or type.is_equal(“AGENT”)or
type.is_equal(“ROLE”) or type.is_equal(“PARTY”) or type.is_equal(“ACTOR”)

CLASS LOCATABLE_REF

Purpose
Reference to a LOCATABLE instance inside the top-level content structure inside a
VERSION<T>; the path attribute is applied to the object that VERSION.data points
to.

Inherit OBJECT_REF

Attributes Signature Meaning

1..1
(redefined)

id: OBJECT_VERSION_ID The identifier of the Version.
Date of Issue: 20 Oct 2008 Page 48 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Support Information Model Identification Package
Rev 1.6.1
0..1

path: String The path to an instance in question, as an
absolute path with respect to the object found
at VERSION.data. An empty path means that
the object referred to by id being specified.

Functions Signature Meaning

1..1
as_uri: String A URI form of the reference, created by con-

catenating the following:
“ehr://” + id.value + “/” + path

Invariant Path_valid: path /= Void implies not path.is_empty

CLASS LOCATABLE_REF
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 49 of 66 Date of Issue: 20 Oct 2008

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Terminology Package Support Information Model
Rev 1.6.1
5 Terminology Package

5.1 Overview
This section describes the terminology package, which contains classes for accessing terminolo-
gies and code sets, including the openEHR Support Terminology, from within instances of classes
defined in the reference model. The classes shown here would normally be inherited via the classes
EXTERNAL_ENVIRONMENT_ACCESS and OPENEHR_DEFINITIONS, although the exact details of
how this is done may vary depending on implementation language.

5.2 Service Interface

5.2.1 Code Sets
A simple terminology service interface is defined according to FIGURE 6, enabling openEHR code
sets and terminology to be referenced formally from within the Reference Model. Two types of coded
entities are distinguished in openEHR, and are accessible via the service interface. The first is codes
from ‘code sets’, which are the kind of terminology where the code stands for itself, such as the ISO
639-1 language codes. The identifiers themselves of these code sets do not appear to be standardised,
but names such as “ISO_639-1” are expected to be used (see below).

In any case, code sets needed within the openEHR models themselves (e.g. for attributes whose value
is a language code) are not referred to directly by an external name such as “ISO_639-1”, but via an
internal constant, in this case, the constant Code_set_id_languages, whose value is defined to be “lan-
guages”. These constants are defined in the class OPENEHR_CODE_SET_IDENTIFIERS in FIGURE
6. The mapping between the internal identifiers and external names should be done in configuration
files. The service function TERMINOLOGY_SERVICE.code_set_for_id() is used to retrieve code sets
on the basis of a constant. The current mapping and external identifiers assumed in openEHR is
defined in the openEHR Support Terminology document. This use of indirection is employed to
ensure that the obsoleting and superseding of code-sets does not directly affect openEHR software.

For code sets not mapped to internally used constants, i.e. code sets not required in the openEHR
model itself, but otherwise known in the terminology service, the function
TERMINOLOGY_SERVICE.code_set() can be used to retrieve these code sets by their external identi-
fier.

5.2.2 Terminologies
Terminologies, including the openEHR Support Terminology are accessed via the
TERMINOLOGY_SERVICE functions terminology() and terminology_identifiers(), where the argument
includes “openehr”, “centc251” (for CEN TC/251codes) and names from the US NLM terminologies
list (see below). The openEHR Terminology supports groups, and the set of groups required by the
reference model is defined in the class OPENEHR_TERMINOLOGY_GROUP_IDENTIFIERS. These
groups correspond to coded attributes found in the openEHR Reference Model.

5.2.3 Terms and Codes in the openEHR Reference Model
True coded attributes in the Reference Model (i.e. attributes of type DV_CODED_TEXT), such as
FEEDER_AUDIT.change_type are defined by an invariant in the enclosing class, such as the follow-
ing:
Date of Issue: 20 Oct 2008 Page 50 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

FI
G

U
R

E
 6

 r
m

.s
up

po
rt.

te
rm

in
ol

og
y

P
ac

ka
ge

te
rm

in
ol

og
y

TE
RM

IN
OL

OG
Y_

SE
RV

IC
E

ter
mi

no
log

y (
na

me
: S

trin
g)

: T
ER

MI
NO

LO
GY

_A
CC

ES
S

co
de

_s
et

(n
am

e:
St

rin
g)

: C
OD

E_
SE

T_
AC

CE
SS

co
de

_s
et_

for
_id

 (id
: S

trin
g)

: C
OD

E_
SE

T_
AC

CE
SS

ha
s_

ter
mi

no
log

y (
na

me
: S

trin
g)

: B
oo

lea
n

ha
s_

co
de

_s
et

(n
am

e:
St

rin
g)

: B
oo

lea
n

ter
mi

no
log

y_
ide

nti
fie

rs:
 Li

st<
St

rin
g>

op
en

eh
r_

co
de

_s
ets

: H
as

h<
St

rin
g,

St
rin

g>
co

de
_s

et_
ide

nti
fie

rs:
 Li

st<
St

rin
g>

TE
RM

IN
OL

OG
Y_

AC
CE

SS

<<
in

te
rfa

ce
>>

id:
 S

trin
g

all
_c

od
es

: S
et<

CO
DE

_P
HR

AS
E>

co
de

s_
for

_g
ro

up
_id

 (.
..)

: S
et<

CO
DE

_P
HR

AS
E>

co
de

s_
for

_g
ro

up
_n

am
e (

...)
: S

et<
CO

DE
_P

HR
AS

E>
ha

s_
co

de
_fo

r_
gr

ou
p_

id
(..

.):
 B

oo
lea

n
ru

br
ic_

for
_c

od
e (

...)
: S

trin
g

CO
DE

_S
ET

_A
CC

ES
S

<<
in

te
rfa

ce
>>

id:
 S

trin
g

all
_c

od
es

: S
et<

CO
DE

_P
HR

AS
E>

ha
s_

lan
g (

...)
: B

oo
lea

n
ha

s_
co

de
 (.

..)
: B

oo
lea

n

OP
EN

EH
R_

TE
RM

IN
OL

OG
Y_

GR
OU

P_
ID

EN
TI

FI
ER

S
co

ns
t T

er
mi

no
log

y_
id_

op
en

eh
r:

St
rin

g i
s “

op
en

eh
r”

co
ns

t G
ro

up
_id

_a
ud

it_
ch

an
ge

_ty
pe

: S
trin

g i
s “

au
dit

 ch
an

ge
 ty

pe
”

co
ns

t G
ro

up
_id

_a
tte

sta
tio

n_
re

as
on

: S
trin

g i
s “

att
es

tat
ion

 re
as

on
”

co
ns

t G
ro

up
_id

_c
om

po
sit

ion
_c

ate
go

ry:
 S

trin
g i

s “
co

mp
os

itio
n c

ate
go

ry”
co

ns
t G

ro
up

_id
_e

ve
nt_

ma
th_

fun
cti

on
: S

trin
g i

s “
ev

en
t m

ath
 fu

nc
tio

n”
co

ns
t G

ro
up

_id
_in

str
uc

tio
n_

sta
tes

: S
trin

g i
s “

ins
tru

cti
on

 st
ate

s”
co

ns
t G

ro
up

_id
_in

str
uc

tio
n_

tra
ns

itio
ns

: S
trin

g i
s “

ins
tru

cti
on

 tr
an

sit
ion

s”
co

ns
t G

ro
up

_id
_n

ull
_fl

av
ou

rs:
 S

trin
g i

s “
nu

ll f
lav

ou
rs”

co
ns

t G
ro

up
_id

_p
ro

pe
rty

: S
trin

g i
s “

pr
op

er
ty”

co
ns

t G
ro

up
_id

_p
ar

tic
ipa

tio
n_

fun
cti

on
: S

trin
g i

s “
pa

rtic
ipa

tio
n f

un
cti

on
”

co
ns

t G
ro

up
_id

_p
ar

tic
ipa

tio
n_

mo
de

: S
trin

g i
s “

pa
rtic

ipa
tio

n m
od

e”
co

ns
t G

ro
up

_id
_s

ett
ing

: S
trin

g i
s “

se
ttin

g”
co

ns
t G

ro
up

_id
_te

rm
_m

ap
pin

g_
pu

rp
os

e:
St

rin
g i

s “
ter

m
ma

pp
ing

 pu
rp

os
e”

co
ns

t G
ro

up
_id

_s
ub

jec
t_r

ela
tio

ns
hip

: S
trin

g i
s “

su
bje

ct
re

lat
ion

sh
ip”

co
ns

t G
ro

up
_id

_v
er

sio
n_

life
cy

cle
_s

tat
e:

St
rin

g i
s “

ve
rsi

on
 lif

ec
yc

le
sta

te”
va

lid
_g

ro
up

_id
(a

n_
id:

 S
trin

g)
: B

oo
lea

n

OP
EN

EH
R_

CO
DE

_S
ET

_ID
EN

TI
FI

ER
S

co
ns

t C
od

e_
se

t_i
d_

ch
ar

ac
ter

_s
ets

: S
trin

g i
s “

ch
ar

ac
ter

 se
ts”

co
ns

t C
od

e_
se

t_i
d_

co
mp

re
ss

ion
_a

lgo
rith

ms
: S

trin
g i

s “
co

mp
re

ss
ion

 al
go

rith
ms

”
co

ns
t C

od
e_

se
t_i

d_
co

un
trie

s:
St

rin
g i

s “
co

un
trie

s”
co

ns
t C

od
e_

se
t_i

d_
int

eg
rity

_c
he

ck
_a

lgo
rith

ms
: S

trin
g i

s “
int

eg
rity

 ch
ec

k a
lgo

rith
ms

”
co

ns
t C

od
e_

se
t_i

d_
lan

gu
ag

es
: S

trin
g i

s “
lan

gu
ag

es
”

co
ns

t C
od

e_
se

t_i
d_

me
dia

_ty
pe

s:
St

rin
g i

s “
me

dia
 ty

pe
s”

co
ns

t C
od

e_
se

t_i
d_

no
rm

al_
sta

tus
es

: S
trin

g i
s “

no
rm

al
sta

tus
es

”
va

lid
_c

od
e_

se
t_i

d(
an

_id
: S

trin
g)

: B
oo

lea
n

Terminology Package Support Information Model
Rev 1.6.1
Change_type_valid:terminology(Terminology_id_openehr).has_code_for_group_id
(Group_id_audit_change_type, change_type.defining_code)

This is a formal way of saying that the attribute change_type must have a value such that its
defining_code (its CODE_PHRASE) is in the set of CODE_PHRASEs in the openEHR Terminology
which are in the group whose indentifier is Group_id_audit_change_type.

A similar invariant is used for attributes of type CODE_PHRASE, which come from a code_set. The
following invariant appears in the class ENTRY (rm.composition.content.entry package):

Language_valid: media_type /= Void and then
code_set(Code_set_languages).has_code(language)

5.3 Identifiers
In openEHR, the identifier of a terminology or code set is found in the terminology_id attribute of the
class CODE_PHRASE (Data Types Information Model, text package).

5.3.1 Code Set Identifiers
Internal code set identifiers (such as “languages”) used in openEHR are defined in the class
OPENEHR_CODE_SET_IDENTIFIERS; assumed external identifiers (such as “ISO_639-1”) for code
sets used by the openEHR Reference Model are defined in the openEHR Support Terminology docu-
ment.

5.3.2 Terminology Identifiers
Valid identifiers that can be used for this attribute for terminologies include but are not limited to the
following:

• “openehr”
• “centc251”
• an identifier value from the first column of the US National Library or Medicine (NLM)

UMLS terminology identifiers table below, in either of two forms:
- as is, e.g. “ICD10AM_2000”, “ICPC93”;
- with any trailing section starting with an underscore removed, e.g. “ICD10AM”.

Other identification schemes are used in some standards, such as ISO Oids. These are not specified
for direct use in openEHR for various reasons:

• they are not currently used by the NLM, and no definitive published list of terminology
identifiers is available;

• ISO Oids are long identifiers and may significantly increase the size of persisted informa-
tion due to the ubiquity of coded terms;

• determing the identity of the terminology in data always requires a request to a service con-
taining the Oid / name mapping;

• there is a safety factor in having human readable terminology identifiers in the data.

The use of Oid-based or other terminology identification schemes is not however incompatible with
openEHR; all that is required is a terminology identifier / name mapping service or table.
Date of Issue: 20 Oct 2008 Page 52 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Support Information Model Terminology Package
Rev 1.6.1
The following table is a snapshot of the US National Library of Medicine UMLS terminology identi-
fiers list. A definitive up-to-date list may be found on the NLM website at
http://www.nlm.nih.gov/research/umls/metaa1.html.

UMLS 2003 Terminology Identifiers
Identifier Description

AIR93 AI/RHEUM,1993
ALT2000 Alternative Billing Concepts, 2000
AOD2000 Alcohol and Other Drug Thesaurus, 2000
BI98 Beth Israel Vocabulary, 1.0
BRMP2002 Portuguese translation of the Medical Subject Headings, 2002
BRMS2002 Spanish translation of the Medical Subject Headings, 2002
CCPSS99 Canonical Clinical Problem Statement System, 1999
CCS99 Clinical Classifications Software, 1999
CDT4 Current Dental Terminology(CDT), 4
COSTAR_89-95 COSTAR, 1989-1995
CPM93 Medical Entities Dictionary, 1993
CPT01SP Physicians' Current Procedural Terminology, Spanish Translation, 2001
CPT2003 Physicians' Current Procedural Terminology, 2003
CSP2002 CRISP Thesaurus, 2002
CST95 COSTART, 1995
DDB00 Diseases Database, 2000
DMD2003 German translation of the Medical Subject Headings, 2003
DMDICD10_1995 German translation of ICD10, 1995
DMDUMD_1996 German translation of UMDNS, 1996
DSM3R_1987 DSM-III-R, 1987
DSM4_1994 DSM-IV, 1994
DUT2001 Dutch Translation of the Medical Subject Headings, 2001
DXP94 DXplain, 1994
FIN2003 Finnish translations of the Medical Subject Headings, 2003
HCDT4 HCPCS Version of Current Dental Terminology(CDT), 4
HCPCS03 Healthcare Common Procedure Coding System, 2003
HCPT03 HCPCS Version of Current Procedural Terminology(CPT), 2003
HHC96 Home Health Care Classification, 1996
HL7_1998-2002 Health Level Seven Vocabulary, 1998-2002
HLREL_1998 ICPC2E-ICD10 relationships from Dr. Henk Lamberts, 1998
HPC99 Health Product Comparison System, 1999
ICD10AE_1998 ICD10, American English Equivalents, 1998
ICD10AMAE_2000 International Statistical Classification of Diseases and Related Health Prob-

lems, Australian Modification, Americanized English Equivalents, 2000
ICD10AM_2000 International Statistical Classification of Diseases and Related Health Prob-

lems, 10th Revision, Australian Modification, January 2000 Release
ICD10_1998 ICD10, 1998
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 53 of 66 Date of Issue: 20 Oct 2008

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

http://www.nlm.nih.gov/research/umls/metaa1.html

Terminology Package Support Information Model
Rev 1.6.1
ICD9CM_2003 ICD-9-CM, 2003
ICPC2AE_1998 International Classification of Primary Care, Americanized English Equiv-

alents, 2E, 1998
ICPC2E_1998 International Classification of Primary Care 2nd Edition, Electronic, 2E,

1998
ICPC2P_2000 International Classification of Primary Care, Version2-Plus, 2000
ICPC93 International Classification of Primary Care, 1993
ICPCBAQ_1993 ICPC, Basque Translation, 1993
ICPCDAN_1993 ICPC, Danish Translation, 1993
ICPCDUT_1993 ICPC, Dutch Translation, 1993
ICPCFIN_1993 ICPC, Finnish Translation, 1993
ICPCFRE_1993 ICPC, French Translation, 1993
ICPCGER_1993 ICPC, German Translation, 1993
ICPCHEB_1993 ICPC, Hebrew Translation, 1993
ICPCHUN_1993 ICPC, Hungarian Translation, 1993
ICPCITA_1993 ICPC, Italian Translation, 1993
ICPCNOR_1993 ICPC, Norwegian Translation, 1993
ICPCPAE_2000 International Classification of Primary Care ,Version2-Plus, Americanized

English Equivalents, 2000
ICPCPOR_1993 ICPC, Portuguese Translation, 1993
ICPCSPA_1993 ICPC, Spanish Translation, 1993
ICPCSWE_1993 ICPC, Swedish Translation, 1993
INS2002 French translation of the Medical Subject Headings, 2002
ITA2003 Italian translation of Medical Subject Headings, 2003
JABL99 Online Congenital Multiple Anomaly/ Mental Retardation Syndromes,

1999
LCH90 Library of Congress Subject Headings, 1990
LNC205 LOINC, 2.05
LOINC LOINC
MCM92 McMaster University Epidemiology Terms, 1992
MDDB99 MasterDrug DataBase, 1999
MDR51 Medical Dictionary for Regulatory Activities Terminology (MedDRA), 5.1
MDRAE51 Medical Dictionary for Regulatory Activities Terminology (MedDRA),

American English Equivalents, 5.1
MDREA51 Medical Dictionary for Regulatory Activities Terminology (MedDRA),

American English, with expanded abbreviations, 5.1
MDREX51 Medical Dictionary for Regulatory Activities Terminology (MedDRA),

with expanded abbreviations, 5.1
MDRPOR51 Medical Dictionary for Regulatory Activities Terminology (MedDRA), 5.1,

Portuguese Edition

UMLS 2003 Terminology Identifiers
Identifier Description
Date of Issue: 20 Oct 2008 Page 54 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Support Information Model Terminology Package
Rev 1.6.1
MDRSPA51 Medical Dictionary for Regulatory Activities Terminology (MedDRA), 5.1,
Spanish Edition

MIM93 Online Mendelian Inheritance in Man, 1993
MMSL01 Multum MediSource Lexicon, 2001
MMX01 Micromedex DRUGDEX, 2001-08
MSH2003_2002_10_24 Medical Subject Headings, 2002_10_24
MTH UMLS Metathesaurus
MTHCH03 Metathesaurus CPT Hierarchical Terms, 2003
MTHHH03 Metathesaurus HCPCS Hierarchical Terms, 2003
MTHICD9_2003 Metathesaurus additional entry terms for ICD-9-CM, 2003
MTHMST2001 Metathesaurus Version of Minimal Standard Terminology Digestive Endos-

copy, 2001
MTHMSTFRE_2001 Metathesaurus Version of Minimal Standard Terminology Digestive Endos-

copy, French Translation, 2001
MTHMSTITA_2001 Metathesaurus Version of Minimal Standard Terminology Digestive Endos-

copy, Italian Translation, 2001
NAN99 Classification of Nursing Diagnoses, 1999
NCBI2001 NCBI Taxonomy, 2001
NCI2001a NCI Thesaurus, 2001a
NCISEER_1999 NCISEER ICD Neoplasm Code Mappings, 1999
NDDF01 FirstDataBank National Drug DataFile, 2001-07
NEU99 Neuronames Brain Hierarchy, 1999
NIC99 Nursing Interventions Classification, 1999
NOC97 Nursing Outcomes Classification, 1997
OMIM97 OMIM, Online Mendelian Inheritance in Man, 1997
OMS94 Omaha System, 1994
PCDS97 Patient Care Data Set, 1997
PDQ2002 Physician Data Query, 2002
PPAC98 Pharmacy Practice Activity Classification , 1998
PSY2001 Thesaurus of Psychological Index Terms, 2001
QMR96 Quick Medical Reference (QMR), 1996
RAM99 QMR clinically related terms from Randolph A. Miller, 1999
RCD99 Clinical Terms Version 3 (CTV3) (Read Codes), 1999
RCDAE_1999 Read thesaurus, American English Equivalents, 1999
RCDSA_1999 Read thesaurus Americanized Synthesized Terms, 1999
RCDSY_1999 Read thesaurus, Synthesized Terms, 1999
RUS2003 Russian Translation of MeSH, 2003
RXNORM_03AA RXNORM Project, META2003AA
SNM2 SNOMED-2, 2
SNMI98 SNOMED International, 1998

UMLS 2003 Terminology Identifiers
Identifier Description
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 55 of 66 Date of Issue: 20 Oct 2008

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Terminology Package Support Information Model
Rev 1.6.1
SNOMED-CT SNOMED International Clinical Terms, 2002
SPN02 Standard Product Nomenclature, 2002
SRC Metathesaurus Source Terminology Names
ULT93 UltraSTAR, 1993
UMD2003 UMDNS: product category thesaurus, 2003
UMLS UMLS: National Library of Medicine, USA
UWDA155 University of Washington Digital Anatomist, 1.5.5
VANDF01 Veterans Health Administration National Drug File, 2001
WHO97 WHO Adverse Reaction Terminology, 1997
WHOFRE_1997 WHOART, French Translation, 1997
WHOGER_1997 WHOART, German Translation, 1997
WHOPOR_1997 WHOART, Portuguese Translation, 1997
WHOSPA_1997 WHOART, Spanish Translation, 1997

UMLS 2003 Terminology Identifiers
Identifier Description
Date of Issue: 20 Oct 2008 Page 56 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Support Information Model Terminology Package
Rev 1.6.1
5.4 Class Definitions

5.4.1 TERMINOLOGY_SERVICE Class

CLASS TERMINOLOGY_SERVICE

Purpose Defines an object providing proxy access to a terminology service.

Inherit OPENEHR_CODE_SET_IDENTIFIERS,
OPENEHR_TERMINOLOGY_GROUP_IDENTIFIERS

Functions Signature Meaning

terminology (name: String):
TERMINOLOGY_ACCESS
require
name /= Void and then
has_terminology (name)

ensure
Result /= Void

Return an interface to the terminology
named name. Allowable names include
• “openehr”
• “centc251”
• any name from are taken from the

US NLM UMLS meta-data list at
http://www.nlm.nih.gov/resear
ch/umls/metaa1.html

code_set (name: String):
CODE_SET_ACCESS
require
name /= Void and then
has_code_set (name)

ensure
Result /= Void

Return an interface to the code_set iden-
tified by the external identifier name
(e.g. “ISO_639-1”).

code_set_for_id(id: String):
CODE_SET_ACCESS
require
id /= Void and then
valid_code_set_id (id)

ensure
Result /= Void

Return an interface to the code_set iden-
tified internally in openEHR by id.

has_terminology (name: String):
Boolean
require
name /= Void and then not
name.is_empty

True if terminology named name known
by this service. Allowable names include
• “openehr”
• “centc251”
• any name from are taken from the

US NLM UMLS meta-data list at
http://www.nlm.nih.gov/resear
ch/umls/metaa1.html
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 57 of 66 Date of Issue: 20 Oct 2008

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

http://www.nlm.nih.gov/research/umls/metaa1.html
http://www.nlm.nih.gov/research/umls/metaa1.html
http://www.nlm.nih.gov/research/umls/metaa1.html

Terminology Package Support Information Model
Rev 1.6.1
5.4.2 TERMINOLOGY_ACCESS Class

has_code_set (name: String):
Boolean
require
name /= Void and then not
name.is_empty

True if code_set linked to internal name
(e.g. “languages”) is available.

terminology_identifiers:
List<String>

Set of all terminology identifiers known
in the terminology service. Values from
the US NLM UMLS meta-data list at
http://www.nlm.nih.gov/research/
umls/metaa1.html

code_set_identifiers:
List<String>

Set of all code set identifiers known in
the terminology service.

openehr_code_sets:
Hash<String, String>

Set of all code sets identifiers for which
there is an internal openEHR name;
returned as a Hash of ids keyed by inter-
nal name.

Invariants

CLASS TERMINOLOGY_ACCESS

Purpose Defines an object providing proxy access to a terminology.

Functions Signature Meaning

id: String Identification of this Terminology

all_codes: Set<CODE_PHRASE> Return all codes known in this terminology

codes_for_group_id (group_id:
String): Set<CODE_PHRASE>

Return all codes under grouper ‘group_id’
from this terminology

has_code_for_group_id
(group_id: String; a_code:
CODE_PHRASE): Boolean

True if ‘a_code’ is known in group
‘group_id’ in the openEHR terminology.

codes_for_group_name (name,
lang: String):
Set<CODE_PHRASE>

Return all codes under grouper whose name
in ‘lang’ is ‘name’ from this terminology

rubric_for_code (code, lang:
String): String

Return all rubric of code ‘code’ in language
‘lang’.

Invariants id_exists: id /= Void and then not id.is_empty

CLASS TERMINOLOGY_SERVICE
Date of Issue: 20 Oct 2008 Page 58 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

http://www.nlm.nih.gov/research/umls/metaa1.html
http://www.nlm.nih.gov/research/umls/metaa1.html

Support Information Model Terminology Package
Rev 1.6.1
5.4.3 CODE_SET_ACCESS Class

5.4.4 OPENEHR_TERMINOLOGY_GROUP_IDENTIFIERS Class

CLASS CODE_SET_ACCESS

Purpose Defines an object providing proxy access to a code_set.

Functions Signature Meaning

id: String External identifier of this code set

all_codes: Set<CODE_PHRASE> Return all codes known in this code set

has_lang (a_lang:
CODE_PHRASE): Boolean

True if code set knows about ‘a_lang’

has_code (a_code:
CODE_PHRASE): Boolean

True if code set knows about ‘a_code’

Invariants Id_valid: id /= Void and then not id.is_empty

CLASS OPENEHR_TERMINOLOGY_GROUP_IDENTIFIERS

Purpose List of identifiers for groups in the openEHR terminology.

Constants Signature Meaning

Terminology_id: String is “openehr” Name of openEHR’s own termi-
nology

Group_id_audit_change_type: String is
“audit change type”

Group_id_attestation_reason: String is
“attestation reason”

Group_id_composition_category: String is
“composition category”

Group_id_event_math_function: String is
“event math function”

Group_id_instruction_states: String is
“instruction states”

Group_id_instruction_transitions: String
is “instruction transitions”

Group_id_null_flavours: String is
“null flavours”
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 59 of 66 Date of Issue: 20 Oct 2008

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Terminology Package Support Information Model
Rev 1.6.1
5.4.5 OPENEHR_CODE_SET_IDENTIFIERS Class

Group_id_property: String is “property”

Group_id_participation_function: String
is “participation function”

Group_id_participation_mode: String is
“participation mode”

Group_id_subject_relationship: String is
“subject relationship”

Group_id_setting: String is “setting”

Group_id_term_mapping_purpose: String
is “term mapping purpose”

Group_id_version_lifecycle_state: String is
“version lifecycle state”

Functions Signature Meaning

valid_terminology_group_id (an_id:
String): Boolean

Validity function to test if an
identifier is in the set defined by
this class.

Invariants

CLASS OPENEHR_CODE_SET_IDENTIFIERS

Purpose List of identifiers for code sets in the openEHR terminology.

Constants Signature Meaning

Code_set_id_character_sets: String is
“character sets”

Code_set_id_compression_algorithms:
String is “compression algorithms”

Code_set_id_countries: String is
“countries”

Code_set_id_integrity_check_algorithms:
String is “integrity check algorithms”

Code_set_id_languages: String is
“languages”

CLASS OPENEHR_TERMINOLOGY_GROUP_IDENTIFIERS
Date of Issue: 20 Oct 2008 Page 60 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Support Information Model Terminology Package
Rev 1.6.1
Code_set_id_media_types: String is
“media types”

Code_set_id_normal_statuses: String is
“normal statuses”

Functions Signature Meaning

valid_code_set_id (an_id: String): Boolean Validity function to test if an
identifier is in the set defined by
this class.

Invariants

CLASS OPENEHR_CODE_SET_IDENTIFIERS
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 61 of 66 Date of Issue: 20 Oct 2008

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Measurement Package Support Information Model
Rev 1.6.1
6 Measurement Package

6.1 Overview
The Measurement package defines a minimum of semantics relating to quantitative measurement,
units, and conversion, enabling the Quantity package of the openEHR Data Types Information Model
to be correctly expressed. As for the Terminology package, a simple service interface is assumed,
which provides useful functions to other parts of the reference model. The definitions underlying
measurement and units come from a variety of sources, including:

• CEN ENV 12435, Medical Informatics - Expression of results of measurements in health
sciences (see http://www.centc251.org);

• the Unified Code for Units of Measure (UCUM), developed by Gunther Schadow and
Clement J. McDonald of The Regenstrief Institute (available in HL7v3 ballot materials;
http://www.hl7.org).

These of course rest in turn upon a vast amount of literature and standards, mainly from ISO on the
subject of scientific measurement.

6.2 Service Interface
A simple measurement data service interface is defined according to FIGURE 7, enabling quantita-
tive semantics to be used formally from within the Reference Model. Note that this service as cur-
rently defined in no way seeks to properly model the semantics of units, conversions etc - it provides
only the minimum functions required by the openEHR Reference Model.

6.2.1 Class Definitions
6.2.1.1 MEASUREMENT_SERVICE Class

CLASS MEASUREMENT_SERVICE

Purpose Defines an object providing proxy access to a measurement information service.

Functions Signature Meaning

is_valid_units_string (units:
String): Boolean
require
units /= Void

True if the units string ‘units’ is a valid string
according to the HL7 UCUM specification.

FIGURE 7 rm.support.measurement Package

measurement

MEASUREMENT_SERVICE

is_valid_units_string (units: String): Boolean
units_equivalent (units1, units2: String): Boolean
Date of Issue: 20 Oct 2008 Page 62 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

http://www.hl7.org
http://www.centc251.org

Support Information Model Measurement Package
Rev 1.6.1
units_equivalent (units1, units2:
String): Boolean
require
units1 /= Void and then
is_valid_units_string(units1)
units2 /= Void and then
is_valid_units_string(units2)

True if two units strings correspond to the
same measured property.

Invariants

CLASS MEASUREMENT_SERVICE
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 63 of 66 Date of Issue: 20 Oct 2008

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Date of Issue: 20 Oct 2008 Page 64 of 66 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Definition Package Support Information Model
Rev 1.6.1

7 Definition Package

7.1 Overview
The definition package, illustrated in FIGURE 8, defines symbolic definitions used by the
openEHR models. Only a small number are currently defined.

7.2 Class Definitions

7.2.1 OPENEHR_DEFINITIONS Class

7.2.2 BASIC_DEFINITIONS Class

CLASS OPENEHR_DEFINITIONS

Purpose Inheritance class to provide access to constants defined in other packages.

Inherit BASIC_DEFINITIONS

Attributes Signature Meaning

Invariants

CLASS BASIC_DEFINITIONS

Purpose Defines globally used constant values.

Attributes Signature Meaning

CR: Character is ‘\015’ Carriage return character

LF: Character is ‘\012’ Linefeed character

Invariants

FIGURE 8 rm.support.definition Package

definition

OPENEHR_DEFINITIONS

BASIC_DEFINITIONS
CR: Character is ‘\015’
LF: Character is ‘\012’

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 65 of 66 Date of Issue: 20 Oct 2008

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Support Information Model References
Rev 1.6.1

A References

A.1 General
1 Cimino J J. Desiderata for Controlled Medical vocabularies in the Twenty-First Century. IMIA

WG6 Conference, Jacksonville, Florida, Jan 19-22, 1997.

Support Information Model
Rev 1.6.1

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 66 of 66 Date of Issue: 20 Oct 2008

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

END OF DOCUMENT

	Copyright Notice
	Amendment Record
	Table of Contents
	1 Introduction
	1.1 Purpose
	1.2 Related Documents
	1.3 Status
	1.4 Peer review
	1.5 Conformance

	2 Support Package
	2.1 Overview
	2.2 Class Definitions
	2.2.1 EXTERNAL_ENVIRONMENT_ACCESS Class

	3 Assumed Types
	3.1 Overview
	3.2 Inbuilt Primitive Types
	3.2.1 Any Type
	3.2.2 Ordered Type
	3.2.3 Numeric Type
	3.2.4 Ordered_numeric Type
	3.2.5 Boolean Type
	3.2.6 Real Type

	3.3 Assumed Library Types
	3.3.1 String Type
	3.3.1.1 UNICODE

	3.3.2 Aggregate Type
	3.3.3 List Type
	3.3.4 Set Type
	3.3.5 Array Type
	3.3.6 Hash Type
	3.3.7 Interval Type

	3.4 Date/Time Types
	3.4.1 TIME_DEFINITIONS Class
	3.4.2 ISO8601_DATE Class
	3.4.3 ISO8601_TIME Class
	3.4.4 ISO8601_DATE_TIME Class
	3.4.5 ISO8601_TIMEZONE Class
	3.4.6 ISO8601_DURATION Class

	4 Identification Package
	4.1 Overview
	4.1.1 Requirements

	4.2 Design
	4.2.1 Primitive Identifiers
	4.2.2 Composite Identifiers
	4.2.2.1 UID-based Identifiers
	4.2.2.2 Archetype Identifiers
	4.2.2.3 Template Identifiers
	4.2.2.4 Terminology Identifiers
	4.2.2.5 Identifying Versions within openEHR Versioned Containers
	4.2.2.6 Generic and External Identifiers
	4.2.2.7 Hierarchical Identifiers
	4.2.2.8 Composite Identifiers and Case
	4.2.2.9 Composite Identifiers and Language

	4.2.3 References

	4.3 Class Descriptions
	4.3.1 UID Class
	4.3.2 ISO_OID Class
	4.3.3 UUID Class
	4.3.4 INTERNET_ID Class
	4.3.4.1 Syntax

	4.3.5 OBJECT_ID Class
	4.3.6 UID_BASED_ID Class
	4.3.6.1 Identifier Syntax

	4.3.7 HIER_OBJECT_ID Class
	4.3.8 OBJECT_VERSION_ID Class
	4.3.8.1 Identifier Syntax

	4.3.9 VERSION_TREE_ID Class
	4.3.9.1 Syntax

	4.3.10 ARCHETYPE_ID Class
	4.3.10.1 Archetype ID Syntax

	4.3.11 TEMPLATE_ID Class
	4.3.12 TERMINOLOGY_ID Class
	4.3.12.1 Identifier Syntax

	4.3.13 GENERIC_ID Class
	4.3.14 OBJECT_REF Class
	4.3.15 ACCESS_GROUP_REF Class
	4.3.16 PARTY_REF Class
	4.3.17 LOCATABLE_REF Class

	5 Terminology Package
	5.1 Overview
	5.2 Service Interface
	5.2.1 Code Sets
	5.2.2 Terminologies
	5.2.3 Terms and Codes in the openEHR Reference Model

	5.3 Identifiers
	5.3.1 Code Set Identifiers
	5.3.2 Terminology Identifiers

	5.4 Class Definitions
	5.4.1 TERMINOLOGY_SERVICE Class
	5.4.2 TERMINOLOGY_ACCESS Class
	5.4.3 CODE_SET_ACCESS Class
	5.4.4 OPENEHR_TERMINOLOGY_GROUP_IDENTIFIERS Class
	5.4.5 OPENEHR_CODE_SET_IDENTIFIERS Class

	6 Measurement Package
	6.1 Overview
	6.2 Service Interface
	6.2.1 Class Definitions
	6.2.1.1 MEASUREMENT_SERVICE Class

	7 Definition Package
	7.1 Overview
	7.2 Class Definitions
	7.2.1 OPENEHR_DEFINITIONS Class
	7.2.2 BASIC_DEFINITIONS Class

	A References
	A.1 General

